My IGARSS 2014 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

MOP.W: Forest Parameter Estimation I

Session Type: Poster
Time: Monday, July 14, 17:20 - 19:00
Location: Poster Area W
Session Chairs: Sylvain Leblanc, Natural Resources Canada and André Beaudoin, Canadian Forest Service
 
  MOP.W.159: AN ENSEMBLE MULTISCALE FILTER APPROACH FOR RETRIEVING LEAF AREA INDEX FROM MULTIPLE SATELLITE DATA
         Jingyi Jiang; Beijing Normal University
         Zhiqiang Xiao; Beijing Normal University
 
  MOP.W.160: A NOVEL METHOD TO ESTIMATE EFFECTIVE PAI FROM TERRESTRIAL LIDAR DATA
         Yunfei Bao; Beijing Institute of Space Mechanics and Electricity
 
  MOP.W.161: AUTOMATIC TREE CROWN DELINEATION IN TROPICAL FOREST USING HYPERSPECTRAL DATA
         Matheus P. Ferreira; National Institute for Space Research
         Daniel C. Zanotta; National Institute for Space Research
         Maciel Zortea; Norwegian Computing Centre (NR)
         Thales Körting; National Institute for Space Research
         Leila Foncesa; National Institute for Space Research
         Yosio Edemir Shimabukuro; National Institute for Space Research
         Carlos Souza Filho; University of Campinas
 
  MOP.W.162: FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR FOREST ATTRIBUTES ESTIMATION
         Michele Dalponte; Research and Innovation Centre, Fondazione E. Mach
         Lorenzo Frizzera; Research and Innovation Centre, Fondazione E. Mach
         Damiano Gianelle; Research and Innovation Centre, Fondazione E. Mach
 
  MOP.W.163: PERFORMANCE EVALUATION OF LIGHTWEIGHT LIDAR FOR UAV APPLICATIONS
         Salvatore Esposito; La Sapienza University of Rome, Oben srl
         Matteo Mura; University of Molise
         Paolo Fallavollita; La Sapienza University of Rome, Oben srl
         Marco Balsi; La Sapienza University of Rome, Oben srl
         Gherardo Chirici; University of Molise
         Arturo Oradini; Forestlab Centre S.r.l
         Marco Marchetti; University of Molise
 
  MOP.W.164: PRACTICAL DATA ASSIMILATION FOR THE RETRIEVAL OF BIOPHYSICAL PARAMETERS OF VEGETATION
         Jose Gomez-Dans; NCEO & University College London
         Phil Lewis; NCEO & University College London
         Maxim Chernetskiy; Friedrich Schiller University Jena
 
  MOP.W.165: ACCURACY AND PRECISION OF THE MODIS BURNED AREA PRODUCT IN THE BRAZILIAN SAVANNA BIOME
         Fernando Araujo; Federal University of Goiás - UFG
         Laerte Ferreira; Federal University of Goiás - UFG
 
  MOP.W.166: 3D RECONSTRUCTION OF A SINGLE TREE FROM TERRESTRIAL LIDAR DATA
         Xiangyu Wang; Beijing Normal University
         Donghui Xie; Beijing Normal University
         Guangjian Yan; Beijing Normal University
         Wuming Zhang; Beijing Normal University
         Yan Wang; Beijing Normal University
         Yiming Chen; Beijing Normal University
 
  MOP.W.167: INDIVIDUAL TREE SEGMENTATION OVER LARGE AREAS USING AIRBORNE LIDAR POINT CLOUD AND VERY HIGH RESOLUTION OPTICAL IMAGERY
         Yuchu Qin; Institut national de l’information géographique et forestière, Laboratoire MATIS, Université Paris Est
         Antonio Ferraz; Institut national de l’information géographique et forestière, Laboratoire MATIS, Université Paris Est
         Clément Mallet; Institut national de l’information géographique et forestière, Laboratoire MATIS, Université Paris Est
         Corina Iovan; UR-CoRéUs-LabEx-CORAIL, Institut de Recherche pour le Développement