MOP.N: Ship and Oil Spill Detection

Session Type: Poster
Time: Monday, July 14, 17:20 - 19:00
Location: Poster Area N
Session Chairs: Waldo Kleynhans, Council of Scientific and Industrial Research and Jean-Pierre Ardouin, Defense R&D Canada
 
MOP.N.97: CFAR SHIP DETECTION WITH A NOTCH FILTER USING POLARIMETRIC SAR DATA
         Armando Marino; ETH Zurich
         Irena Hajnsek; ETH Zurich / German Aerospace Center (DLR)
 
MOP.N.98: SHIP DETECTION PERFORMANCE ASSESSMENT FOR SIMULATED RCM SAR DATA
         Ghada Atteia; University of Calgary
         Michael Collins; University of Calgary
 
MOP.N.99: SHIP DETECTION IN SOUTH AFRICAN OCEANS USING SAR, CFAR AND A HAAR-LIKE FEATURE CLASSIFIER
         Colin Schwegmann; Council for Scientific and Industrial Research (CSIR)
         Waldo Kleynhans; Council for Scientific and Industrial Research (CSIR)
         Brian Salmon; Council for Scientific and Industrial Research (CSIR)
 
MOP.N.100: SIMULATED ANNEALING CFAR THRESHOLD SELECTION FOR SOUTH AFRICAN SHIP DETECTION IN ASAR IMAGERY
         Colin Schwegmann; Council for Scientific and Industrial Research (CSIR)
         Waldo Kleynhans; Council for Scientific and Industrial Research (CSIR)
         Brian Salmon; Council for Scientific and Industrial Research (CSIR)
 
MOP.N.101: VALIDATION OF AN AUTOMATIC SYSTEM TO DETECT OIL SPILLS IN X- AND L-BAND SAR IMAGES
         Paolo Trivero; Università del Piemonte Orientale
         Walter Biamino; Università del Piemonte Orientale
         Marco Cavagnero; Università del Piemonte Orientale
         Lorenza Di Matteo; Università del Piemonte Orientale
         Davide Loreggia; Istituto Nazionale di Astrofisica
 
MOP.N.102: FEATURE SELECTION AND CLASSIFICATION OF OIL SPILLS IN SAR IMAGE BASED ON STATISTICS AND ARTIFICIAL NEURAL NETWORK
         Youjun Ma; Ocean University of China
         Kan Zeng; Ocean University of China
         Chaofang Zhao; Ocean University of China
         Xintao Ding; Ocean University of China
         Ming-Xia He; Ocean University of China