FR2.W1: Techniques for Classification of Hyperspectral Images II |
Session Type: Oral |
Time: Friday, July 31, 10:30 - 12:10 |
Location: White 1 |
Session Chairs: Mauro Dalla Mura, Gipsa-lab Grenoble-INP and Bing Zhang, RADI |
FR2.W1.1: TO BE OR NOT TO BE CONVEX? A STUDY ON REGULARIZATION IN HYPERSPECTRAL IMAGE CLASSIFICATION |
Devis Tuia; University of Zurich |
Remi Flamary; Université de Nice Sophia Antipolis |
Michel Barlaud; Université de Nice Sophia Antipolis |
FR2.W1.2: DEEP FEATURE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION |
Jiming Li; Zhejiang Police College |
Lorenzo Bruzzone; University of Trento |
Sicong Liu; University of Trento |
FR2.W1.3: ADAPTIVE SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION |
Wei Li; Beijing University of Chemical Technology |
Qian Du; Mississippi State University |
FR2.W1.4: DEEP SUPERVISED LEARNING FOR HYPERSPECTRAL DATA CLASSIFICATION THROUGH CONVOLUTIONAL NEURAL NETWORKS |
Konstantinos Makantasis; Technical University of Crete |
Konstantinos Karantzalos; National Technical University of Athens |
Anastasios Doulamis; National Technical University of Athens |
Nikolaos Doulamis; National Technical University of Athens |
FR2.W1.5: AN ENSEMBLE ACTIVE LEARNING APPROACH FOR SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES |
Zhou Zhang; Purdue University |
Melba M. Crawford; Purdue University |