WE3.W1: Techniques for Classification of Multispectral Images |
Session Type: Oral |
Time: Wednesday, July 29, 13:30 - 15:10 |
Location: White 1 |
Session Chairs: Melba Crawford, Purdue University and Jocelyn Chanussot, Grenoble Institute of Technology |
WE3.W1.1: A SUPERVISED BAYESIAN APPROACH FOR SIMULTANEOUS SEGMENTATION AND CLASSIFICATION |
Daniel Capella Zanotta; IFRS - Rio Grande |
Matheus Pinheiro Ferreira; INPE |
Maciel Zortea; Instituto de Informática - Universidade Federal do Rio Grande do Sul |
Jean Marcel Almeida Espinoza; IFRS - Rio Grande |
Yosio Edemir Shimabukuro; INPE |
WE3.W1.2: A MARKOV RANDOM FIELD MODEL FOR DECISION LEVEL FUSION OF MULTI-SOURCE IMAGE SEGMENTS |
Willem Olding; University of Tasmania |
Jan Olivier; University of Tasmania |
Brian Salmon; University of Tasmania |
WE3.W1.3: A COMPARATIVE STUDY OF SAMPLING ANALYSIS IN SCENE CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGERY |
Jingwen Hu; Wuhan University |
Gui-Song Xia; Wuhan University |
Fan Hu; Wuhan University |
Hong Sun; Wuhan University |
Liangpei Zhang; Wuhan University |
WE3.W1.4: SUP-PIXEL MAPPING OF URBAN SURFACES USING ENMAP DATA |
Johannes Rosentreter; Freie Universität Berlin |
Björn Waske; Freie Universität Berlin |
WE3.W1.5: HISTOGRAM BASED ATTRIBUTE PROFILES FOR CLASSIFICATION OF VERY HIGH RESOLUTION REMOTE SENSING IMAGES |
Begüm Demir; University of Trento |
Lorenzo Bruzzone; University of Trento |