Technical Program

All times are in Alaska local time (AKDT/UTC−08:00)

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICIP 2021 Open Preview.

MLR-APPL-IP-4: Machine learning for image processing 4

Interactive Q&A Time: Tuesday, September 21, 13:30 - 15:00
Session Chair: Benedetta Tondi, University of Siena
 
 MLR-APPL-IP-4.1: EBB: PROGRESSIVE OPTIMIZATION FOR PARTIAL DOMAIN ADAPTATION
         Cheng Feng; Fujitsu R&D Center, Co., LTD
         Chaoliang Zhong; Fujitsu R&D Center, Co., LTD
         Jie Wang; Fujitsu R&D Center, Co., LTD
         Jun Sun; Fujitsu R&D Center, Co., LTD
         Yasuto Yokota; Fujitsu Laboratories
 
 MLR-APPL-IP-4.2: A PARAMETER EFFICIENT MULTI-SCALE CAPSULE NETWORK
         Minki Jeong; Korea Advanced Institute of Science and Technology
         Changick Kim; Korea Advanced Institute of Science and Technology
 
 MLR-APPL-IP-4.3: GRADIENT LOCAL BINARY PATTERN FOR CONVOLUTIONAL NEURAL NETWORKS
         Jialiang Tang; Southwest University of Science and Technology
         Ning Jiang; Southwest University of Science and Technology
         Wenxin Yu; Southwest University of Science and Technology
 
 MLR-APPL-IP-4.4: INFOVAEGAN : LEARNING JOINT INTERPRETABLE REPRESENTATIONS BY INFORMATION MAXIMIZATION AND MAXIMUM LIKELIHOOD
         Fei Ye; University of York
         Adrian Bors; University of York
 
 MLR-APPL-IP-4.6: EXPLOITING LEARNED SYMMETRIES IN GROUP EQUIVARIANT CONVOLUTIONS
         Attila Lengyel; Delft University of Technology
         Jan C. van Gemert; Delft University of Technology
 
 MLR-APPL-IP-4.7: TRANSRESNET: TRANSFERABLE RESNET FOR DOMAIN ADAPTATION
         Juepeng Zheng; Tsinghua University
         Wenzhao Wu; National Supercomputing Center in Wuxi
         Yi Zhao; Tsinghua University
         Haohuan Fu; Tsinghua University
 
 MLR-APPL-IP-4.8: SOURCE CLASS SELECTION WITH LABEL PROPAGATION FOR PARTIAL DOMAIN ADAPTATION
         Qian Wang; Durham University
         Toby Breckon; Durham University
 
 MLR-APPL-IP-4.9: AFFINE NON-NEGATIVE COLLABORATIVE REPRESENTATION FOR DEEP METRIC LEARNING
         Min Zhu; China University of Petroleum (East China)
         Bao-Di Liu; China University of Petroleum (East China)
         Weifeng Liu; China University of Petroleum (East China)
         Kai Zhang; China University of Petroleum (East China)
         Ye Li; Qilu University of Technology (Shandong Academy of Sciences)
         Xiaoping Lu; Haier Industrial Intelligence Institute Co., Ltd
 
 MLR-APPL-IP-4.10: SELF-BALANCED LEARNING FOR DOMAIN GENERALIZATION
         Jin Kim; Yonsei University
         Jiyoung Lee; Yonsei University
         Jungin Park; Yonsei University
         Dongbo Min; Ewha Womans University
         Kwanghoon Sohn; Yonsei University
 
 MLR-APPL-IP-4.11: ENHANCED SEPARABLE DISENTANGLEMENT FOR UNSUPERVISED DOMAIN ADAPTATION
         Youshan Zhang; Lehigh University
         Brian Davison; Lehigh University
 
 MLR-APPL-IP-4.12: WEIGHT REPARAMETRIZATION FOR BUDGET-AWARE NETWORK PRUNING
         Robin Dupont; Sorbonne université
         Hichem Sahbi; Sorbonne université
         Guillaume Michel; Netatmo
 
 MLR-APPL-IP-4.13: TASK-AGNOSTIC CONTINUAL LEARNING USING BASE-CHILD CLASSIFIERS
         Pranshu Ranjan Singh; Institute for Infocomm Research (I2R), A*STAR
         Saisubramaniam Gopalakrishnan; Institute for Infocomm Research (I2R), A*STAR
         Qiao ZhongZheng; Nanyang Technological University (NTU)
         Ponnuthurai N. Suganthan; Nanyang Technological University (NTU)
         Savitha Ramasamy; Institute for Infocomm Research (I2R), A*STAR
         ArulMurugan Ambikapathi; Institute for Infocomm Research (I2R), A*STAR