Technical Program

All times are in Alaska local time (AKDT/UTC−08:00)

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICIP 2021 Open Preview.

MLR-APPL-IP-1: Machine learning for image processing 1

Interactive Q&A Time: Monday, September 20, 13:30 - 15:00
Session Chair: Shan Du,
 
 MLR-APPL-IP-1.1: MULTI-SCALE FEATURE GUIDED LOW-LIGHT IMAGE ENHANCEMENT
         Lanqing Guo; Nanyang Technological University
         Renjie Wan; Nanyang Technological University
         Guan-Ming Su; Dolby Laboratories
         Alex C. Kot; Nanyang Technological University
         Bihan Wen; Nanyang Technological University
 
 MLR-APPL-IP-1.2: CASCADE ATTENTION BLEND RESIDUAL NETWORK FOR SINGLE IMAGE SUPER-RESOLUTION
         Tianyu Chen; Southwest University
         Guoqiang Xiao; Southwest University
         Xiaoqin Tang; Southwest University
         Xianfeng Han; Southwest University
         Wenzhuo Ma; Chongqing Productivity Council
         Xinye Gou; Chongqing Productivity Council
 
 MLR-APPL-IP-1.3: SCALE-INVARIANT SALIENT EDGE DETECTION
         Gang Hu; State University of New York @ Buffalo State
         Conner Saeli; State University of New York @ Buffalo State
 
 MLR-APPL-IP-1.4: TWO-STAGE DOMAIN ADAPTED TRAINING FOR BETTER GENERALIZATION IN REAL-WORLD IMAGE RESTORATION AND SUPER-RESOLUTION
         Cansu Korkmaz; Koç University
         Ahmet Murat Tekalp; Koç University
         Zafer Dogan; Koç University
 
 MLR-APPL-IP-1.5: LEARNING TO DISENTANGLE REPRESENTATIONS FOR RAIN STREAK REMOVAL
         Younkwan Lee; Gwangju Institute of Science and Technology
         Hyeongjun Yoo; Gwangju Institute of Science and Technology
         Moongu Jeon; Gwangju Institute of Science and Technology
 
 MLR-APPL-IP-1.6: QUALITY ASSESSMENT OF SCREEN CONTENT IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORK WITH DUAL PATHWAYS
         Yongli Chang; Tianjin University
         Sumei Li; Tianjin University
         Anqi Liu; Tianjin University
 
 MLR-APPL-IP-1.7: IMPROVING THE QUALITY OF ILLUSTRATIONS: TRANSFORMING AMATEUR ILLUSTRATIONS TO A PROFESSIONAL STANDARD
         Keita Awane; University of Tokyo
         Koki Tsubota; University of Tokyo
         Hikaru Ikuta; University of Tokyo
         Yusuke Matsui; University of Tokyo
         Kiyoharu Aizawa; University of Tokyo
         Naohiro Yanase; BOOK WALKER Co.,Ltd.
 
 MLR-APPL-IP-1.8: SELF-ORGANIZED RESIDUAL BLOCKS FOR IMAGE SUPER-RESOLUTION
         Onur Keles; Koç University
         Ahmet Murat Tekalp; Koç University
         Junaid Malik; Tampere University
         Serkan Kiranyaz; Qatar University
 
 MLR-APPL-IP-1.9: A UNIFIED DENSITY-DRIVEN FRAMEWORK FOR EFFECTIVE DATA DENOISING AND ROBUST ABSTENTION
         Krishanu Sarker; Georgia State University
         Xiulong Yang; Georgia State University
         Yang Li; Georgia State University
         Saeid Belkasim; Georgia State University
         Shihao Ji; Georgia State University
 
 MLR-APPL-IP-1.10: QUALITY AND COMPLEXITY ASSESSMENT OF LEARNING-BASED IMAGE COMPRESSION SOLUTIONS
         João Dick; Federal University of Rio Grande do Sul
         Brunno Abreu; Federal University of Rio Grande do Sul
         Mateus Grellert; Federal University of Santa Catarina
         Sergio Bampi; Federal University of Rio Grande do Sul
 
 MLR-APPL-IP-1.11: ACCURATE COMPENSATION MAKES THE WORLD MORE CLEAR FOR THE VISUALLY IMPAIRED
         Sijing Wu; Shanghai Jiao Tong University
         Huiyu Duan; Shanghai Jiao Tong University
         Xiongkuo Min; Shanghai Jiao Tong University
         Danyang Tu; Shanghai Jiao Tong University
         Guangtao Zhai; Shanghai Jiao Tong University