Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCHAL.1
Paper Title RGB-D BASED MULTIMODAL CONVOLUTIONAL NEURAL NETWORKS FOR SPACECRAFT RECOGNITION
Authors Nouar AlDahoul, Hezerul Abdul Karim, Multimedia University, Malaysia; Mhd Adel Momo, YO-VIVO corporation, Philippines
SessionCHAL: SPARK Challenge
LocationArea K
Session Time:Sunday, 19 September, 10:00 - 12:30
Presentation Time:Sunday, 19 September, 10:00 - 12:30
Presentation Poster
Topic Challenge Sessions: SPARK Challenge
Abstract Spacecraft recognition is a significant component of space situational awareness (SSA), especially for applications such as active debris removal, on-orbit servicing, and satellite formation. The complexity of recognition in actual space imagery is caused by a large diversity in sensing conditions, including background noise, low signal-to-noise ratio, different orbital scenarios, and high contrast. This paper addresses the previous problem and proposes multimodal convolutional neural networks (CNNs) for spacecraft detection and classification. The proposed solution includes two models: 1) a pre-trained ResNet50 CNN connected to a support vector machine (SVM) classifier for classification of RGB images. 2) an end-to-end CNN for classification of depth images. The experiments conducted on a novel SPARK dataset was generated under a realistic space simulation environment and has 150k of RGB images and 150k of depth images with 11 categories. The results show high performance of the proposed solution in terms of accuracy (89 %), F1 score (87 %), and Perf metric (1.8).