Paper ID | COM-2.5 | ||
Paper Title | LEARNED IMAGE COMPRESSION WITH CHANNEL-WISE GROUPED CONTEXT MODELING | ||
Authors | Liang Yuan, Jixiang Luo, Shaohui Li, Wenrui Dai, Chenglin Li, Junni Zou, Hongkai Xiong, Shanghai Jiao Tong University, China | ||
Session | COM-2: Learning-based Image and Video Coding | ||
Location | Area H | ||
Session Time: | Wednesday, 22 September, 14:30 - 16:00 | ||
Presentation Time: | Wednesday, 22 September, 14:30 - 16:00 | ||
Presentation | Poster | ||
Topic | Image and Video Communications: Lossy coding of images & video | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Learned image compression has achieved improved rate-distortion performance with end-to-end optimized framework based on deep neural networks. However, context-based entropy modeling for learned image compression cannot simultaneously achieve enhanced efficiency and sufficiently exploiting the channel-wise correlations. In this paper, we propose a novel framework for learned image compression with channel-wise grouped context modeling. The proposed framework presents channel-wise grouping to explicitly exploit the channel-wise correlations and develop a grouped 3-D context model to achieve efficient entropy coding with a guarantee of rate-distortion performance. The proposed framework achieves competitive performance with a significantly reduced decoding complexity in comparison to 3-D context models. |