Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVSMR-1.12
Paper Title IMPROVED MULTICLASS ADABOOST FOR IMAGE CLASSIFICATION: THE ROLE OF TREE OPTIMIZATION
Authors Arman Zharmagambetov, Magzhan Gabidolla, Miguel Á. Carreira-Perpiñán, University of California, Merced, United States
SessionMLR-APPL-IVSMR-1: Machine learning for image and video sensing, modeling and representation 1
LocationArea C
Session Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Decision tree boosting is considered as an important and widely recognized method in image classification, despite dominance of the deep learning based approaches in this area. Provided with good image features, it can produce a powerful model with unique properties, such as strong predictive power, scalability, interpretability, etc. In this paper, we propose a novel tree boosting framework which capitalizes on the idea of using shallow, sparse and yet powerful oblique decision trees (trained with recently proposed Tree Alternating Optimization algorithm) as the base learners. We empirically show that the resulting model achieves better or comparable performance (both in terms of accuracy and model size) against established boosting algorithms such as gradient boosting or AdaBoost in number of benchmarks. Further, we show that such trees can directly and efficiently handle multiclass problems without using one-vs-all strategy employed by most of the practical boosting implementations.