Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVASR-1.12
Paper Title LEARNERS’ EFFICIENCY PREDICTION USING FACIAL BEHAVIOR ANALYSIS
Authors Manisha Verma, Yuta Nakashima, Osaka University, Japan; Hirokazu Kobori, Daikin Industries, Ltd., Japan; Ryota Takaoka, Osaka University , Japan; Noriko Takemura, Tsukasa Kimura, Hajime Nagahara, Masayuki Numao, Kazumitsu Shinohara, Osaka University, Japan
SessionMLR-APPL-IVASR-1: Machine learning for image and video analysis, synthesis, and retrieval 1
LocationArea D
Session Time:Monday, 20 September, 13:30 - 15:00
Presentation Time:Monday, 20 September, 13:30 - 15:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video analysis, synthesis, and retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In the e-learning context, how much the learner is concentrated and engaged, or the learners' efficiency, is essential for providing adaptive and flexible materials, timely suggestions, etc., which can lead to efficient learning. In this work, we explore to predict learners' efficiency with a realistic configuration, in which we use a webcam or a laptop PC's built-in camera. Specifically, we first provide a feasible definition of the learners' efficiency, and based on this definition, we predict one's efficiency from facial behavior. We predict the learners' efficiency using various convolutional neural networks. Results are discussed using different evaluation metrics.