Paper ID | TEC-6.11 | ||
Paper Title | IMPROVING NEURAL BLIND DECONVOLUTION | ||
Authors | Jan Kotera, Filip Šroubek, Václav Šmídl, Institute of Information Theory and Automation, Czech Academy of Sciences, Czech Republic | ||
Session | TEC-6: Image and Video Processing 2 | ||
Location | Area G | ||
Session Time: | Monday, 20 September, 15:30 - 17:00 | ||
Presentation Time: | Monday, 20 September, 15:30 - 17:00 | ||
Presentation | Poster | ||
Topic | Image and Video Processing: Restoration and enhancement | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | The field of blind image deblurring was for a long time dominated by Maximum-A-Posteriori methods seeking the optimal pair of sharp image--blur of a suitable functional. Recently, learning-based methods, especially those based on deep convolutional neural networks, are proving effective and are receiving increasing attention by the research community. In 2020, Ren et al. proposed a deblurring method called SelfDeblur which combines the model-driven approach of traditional MAP methods and the generative power of neural nets. The method is capable of producing very high-quality results, yet it inherits some problems of MAP methods, especially possible convergence to a wrong local optimum. In this paper we propose several easy-to-implement modifications of SelfDeblur, namely suitable initialization, multiscale processing, and regularization, that improve the average performance of the original method and decrease the probability of failure. |