Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDTEC-6.11
Paper Title IMPROVING NEURAL BLIND DECONVOLUTION
Authors Jan Kotera, Filip Šroubek, Václav Šmídl, Institute of Information Theory and Automation, Czech Academy of Sciences, Czech Republic
SessionTEC-6: Image and Video Processing 2
LocationArea G
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Image and Video Processing: Restoration and enhancement
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The field of blind image deblurring was for a long time dominated by Maximum-A-Posteriori methods seeking the optimal pair of sharp image--blur of a suitable functional. Recently, learning-based methods, especially those based on deep convolutional neural networks, are proving effective and are receiving increasing attention by the research community. In 2020, Ren et al. proposed a deblurring method called SelfDeblur which combines the model-driven approach of traditional MAP methods and the generative power of neural nets. The method is capable of producing very high-quality results, yet it inherits some problems of MAP methods, especially possible convergence to a wrong local optimum. In this paper we propose several easy-to-implement modifications of SelfDeblur, namely suitable initialization, multiscale processing, and regularization, that improve the average performance of the original method and decrease the probability of failure.