Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDARS-2.6
Paper Title DYNAMIC DUAL SAMPLING MODULE FOR FINE-GRAINED SEMANTIC SEGMENTATION
Authors Chen Shi, Shanghai Jiao Tong University, China; Xiangtai Li, Peking University, China; Yanran Wu, Shanghai Jiao Tong University, China; Yunhai Tong, Peking University, China; Yi Xu, Shanghai Jiao Tong University, China
SessionARS-2: Image and Video Segmentation
LocationArea I
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Image and Video Analysis, Synthesis, and Retrieval: Image & Video Interpretation and Understanding
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Representation of semantic context and local details is the essential issue for building modern semantic segmentation models. However, the interrelationship between semantic context and local details is not well explored in previous works. In this paper, we propose a Dynamic Dual Sampling Module (DDSM) to conduct dynamic affinity modeling and propagate semantic context to local details, which yields a more discriminative representation. Specifically, a dynamic sampling strategy is used to sparsely sample representative pixels and channels in the higher layer, forming adaptive compact support for each pixel and channel in the lower layer. The sampled features with high semantics are aggregated according to the affinities and then propagated to detailed lower-layer features, leading to a fine-grained segmentation result with well-preserved boundaries. Experiment results on both Cityscapes and Camvid datasets validate the effectiveness and efficiency of the proposed approach. Code and models will be available at https://github.com/Fantasticarl/DDSM.