Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVSMR-2.11
Paper Title DOMAIN ADAPTING ABILITY OF SELF-SUPERVISED LEARNING FOR FACE RECOGNITION
Authors Chun-Hsien Lin, Bing-Fei Wu, National Chiao Tung University, Taiwan
SessionMLR-APPL-IVSMR-2: Machine learning for image and video sensing, modeling and representation 2
LocationArea D
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Although deep convolutional networks have achieved great performance in face recognition tasks, the challenge of domain discrepancy still exists in real world applications. Lack of domain coverage of training data (source domain) makes the learned models degenerate in a testing scenario (target domain). In face recognition tasks, classes in two domains are usually different, so classical domain adaptation approaches, assuming there are shared classes in domains, may not be reasonable solutions for this problem. In this paper, self-supervised learning is adopted to learn a better embedding space where the subjects in target domain are more distinguishable. The learning goal is maximizing the similarity between the embeddings of each image and its mirror in both domains. The experiments show its competitive results compared with prior works. To know the reason why it can achieve such performance, we further discuss how this approach affects the learning of embeddings.