Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDTEC-7.1
Paper Title FAST & ROBUST IMAGE INTERPOLATION USING GRADIENT GRAPH LAPLACIAN REGULARIZER
Authors Fei Chen, Fuzhou University, China; Gene Cheung, Xue Zhang, York University, Canada
SessionTEC-7: Interpolation, Enhancement, Inpainting
LocationArea G
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Image and Video Processing: Interpolation, super-resolution, and mosaicing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In the graph signal processing (GSP) literature, it has been shown that signal-dependent graph Laplacian regularizer (GLR) can efficiently promote piecewise constant (PWC) signal reconstruction for various image restoration tasks. However, for planar image patches, like total variation (TV), GLR may suffer from the well-known "staircase" effect. To remedy this problem, we generalize GLR to gradient graph Laplacian regularizer (GGLR) that provably promotes piecewise planar (PWP) signal reconstruction for the image interpolation problem---a 2D grid with randomly missing pixels that requires completion. Specifically, we first construct two higher-order gradient graphs to connect local horizontal and vertical gradients. Each local gradient is estimated using structure tensor, which is robust using known pixels in a small neighborhood, mitigating the problem of larger noise variance when computing gradient of gradients. Moreover, unlike total generalized variation (TGV), GGLR retains the quadratic form of GLR, leading to an unconstrained quadratic programming (QP) problem per iteration that can be solved quickly using conjugate gradient (CG). We derive the means-square-error minimizing weight parameter for GGLR, trading off bias and variance of the signal estimate. Experiments show that GGLR outperformed competing schemes in interpolation quality for severely damaged images at a reduced complexity.