Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCOM-1.12
Paper Title Human-Machine Collaborative Video Coding Through Cuboidal Partitioning
Authors Ashek Ahmmed, Manoranjan Paul, Charles Sturt University, Australia; Manzur Murshed, Federation University, Australia; David Taubman, University of New South Wales, Australia
SessionCOM-1: Image and Video Coding
LocationArea H
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Image and Video Communications: Lossy coding of images & video
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Video coding algorithms encode and decode an entire video frame while feature coding techniques only preserve and communicate the most critical information needed for a given application. This is because video coding targets human perception, while feature coding aims for machine vision tasks. Recently, attempts are being made to bridge the gap between these two domains. In this work, we propose to leverage on to the commonality that exists between human vision and machine vision applications by employing cuboids. This is because cuboids, estimated rectangular regions over a video frame, are computationally efficient, has a compact representation and object centric. Such properties are already shown to add value to traditional video coding systems. Herein cuboidal feature descriptors are extracted from the current frame and then employed for accomplishing a machine vision task in the form of object detection. Experimental results show that a trained classifier yields superior average precision when equipped with cuboidal features oriented representation of the current test frame. Additionally, this representation costs 7% less in bit rate if the captured frames are need be communicated to a receiver.