Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVSMR-3.8
Paper Title MULTI-TASK OCCLUSION LEARNING FOR REAL-TIME VISUAL OBJECT TRACKING
Authors Gozde Sahin, Laurent Itti, University of Southern California, United States
SessionMLR-APPL-IVSMR-3: Machine learning for image and video sensing, modeling and representation 3
LocationArea D
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Occlusion handling is one of the important challenges in the field of visual tracking, especially for real-time applications, where further processing for occlusion reasoning may not always be possible. In this paper, an occlusion-aware real-time object tracker is proposed, which enhances the baseline SiamRPN model with an additional branch that directly predicts the occlusion level of the object. Experimental results on GOT-10k and VOT benchmarks show that learning to predict occlusion levels end-to-end in this multi-task learning framework helps improve tracking accuracy, especially on frames that contain occlusions. Up to 7% improvement on EAO scores can be observed for occluded frames, which are only 11% of the data. The performance results over all frames also indicate the model does favorably compared to the other trackers.