Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDARS-1.5
Paper Title DEPTH-ASSISTED JOINT DETECTION NETWORK FOR MONOCULAR 3D OBJECT DETECTION
Authors Jianjun Lei, Tingyi Guo, Bo Peng, Chuanbo Yu, Tianjin University, China
SessionARS-1: Object Detection
LocationArea I
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Image and Video Analysis, Synthesis, and Retrieval: Image & Video Interpretation and Understanding
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In the past few years, monocular 3D object detection has attracted increasing attention due to the merit of low cost and wide range of applications. In this paper, a depth-assisted joint detection network (MonoDAJD) is proposed for monocular 3D object detection. Specifically, a consistency-aware joint detection mechanism is proposed to jointly detect objects in the image and depth map, and exploit the localization information from the depth detection stream to optimize the detection results. To obtain more accurate 3D bounding boxes, an orientation-embedded NMS is designed by introducing the orientation confidence prediction and embedding the orientation confidence into the traditional NMS. Experimental results on the widely used KITTI benchmark demonstrate that the proposed method achieves promising performance compared with the state-of-the-art monocular 3D object detection methods.