Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-BSIP.3
Paper Title EEG BASED VISUAL CLASSIFICATION WITH MULTI-FEATURE JOINT LEARNING
Authors Xin Ma, Yiping Duan, Shuzhan Hu, Xiaoming Tao, Ning Ge, Tsinghua University, China
SessionMLR-APPL-BSIP: Machine learning for biomedical signal and image processing
LocationArea C
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Applications of Machine Learning: Machine learning for biomedical signal and image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract With a significant boost in neuroscience and artificial intelligence, decoding the process of human vision has become a hot topic in the last few decades. Although many existing deep learning models are employed to explore and solve mysteries of human brain activity, the accuracy and reliability of the visual classification task based on electroencephalography (EEG) still have space for promotion. In our research, we design the experiments to collect the subjects’ EEG data when they are watching the different types of images. In this way, an image-EEG dataset corresponding to 80 ImageNet object classes was constructed. Afterward, we proposed a dual-EEGNet for joint feature learning for multi-category visual classification. Especially, one branch EEGNet is used to extract the spatio-temporal embeddings of EEG signals, and the other branch is used to extract the time-frequency embeddings of EEG signals. The experimental results demonstrate that EEG signals can reflect the human brain activity and distinguish the different types of images. Moreover, the proposed model with joint features has a better classification performance in terms of accuracy compared with other methods.