Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVASR-1.3
Paper Title Deep Metric Network via Heterogeneous Semantics for Image Sentiment Analysis
Authors Yun Liang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, Hokkaido University, Japan
SessionMLR-APPL-IVASR-1: Machine learning for image and video analysis, synthesis, and retrieval 1
LocationArea D
Session Time:Monday, 20 September, 13:30 - 15:00
Presentation Time:Monday, 20 September, 13:30 - 15:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video analysis, synthesis, and retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper presents a novel method for image sentiment analysis called a deep metric network via heterogeneous semantics (DMN-HS). The contribution of the proposed method is introduction of the image captioning into image sentiment analysis to reflect a global impression that cannot be represented by classical visual features extracted from images. In order to consider a sentiment correlation between visual and captioning features, the proposed method newly designs a network to integrate these heterogeneous semantics features (HS features). Furthermore, with consideration of relations among sentiments based on the HS features, the proposed method constructs a sentiment latent space by introducing the center loss concerning relationships between different sentiments and enables the classification of image sentiments. From experimental results, the performance improvement via DMN-HS is confirmed.