Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVASR-2.4
Paper Title SEMI-SUPERVISED LEARNING OF MONOCULAR 3D HAND POSE ESTIMATION FROM MULTI-VIEW IMAGES
Authors Markus Müller, Georg Poier, Horst Possegger, Horst Bischof, Graz University of Technology, Austria
SessionMLR-APPL-IVASR-2: Machine learning for image and video analysis, synthesis, and retrieval 2
LocationArea D
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video analysis, synthesis, and retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Most modern hand pose estimation methods rely on Convolutional Neural Networks (CNNs), which typically require a large training dataset to perform well. Exploiting unlabeled data provides a way to reduce the required amount of annotated data. We propose to take advantage of a geometry-aware representation of the human hand, which we learn from multi-view images without annotations. The objective for learning this representation is simply based on learning to predict a different view. Our results show that using this objective yields clearly superior pose estimation results compared to directly mapping an input image to the 3D joint locations of the hand if the amount of 3D annotations is limited. We further show the effect of the objective for either case, using the objective for pre-learning as well as to simultaneously learn to predict novel views and to estimate the 3D pose of the hand.