Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCIS-1.7
Paper Title A REGULARIZED APPROACH FOR RESPIRATORY MOTION ESTIMATION FROM SHORT-TIME PROJECTION DATA FRAMES IN EMISSION TOMOGRAPHY
Authors Andoni I. Garmendia, Yongyi Yang, Chao Song, Miles N. Wernick, Illinois Institute of Technology, Spain; P. Hendrik Pretorius, Michael A. King, University of Massachusetts Medical School, United States
SessionCIS-1: Computational Imaging Systems
LocationArea J
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Computational Imaging Systems: Tomographic Imaging
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Cardiac SPECT perfusion imaging is important for diagnosis and evaluation of coronary artery diseases. However, the acquired image data can suffer from motion blur due to patient respiratory motion. We propose a maximum-likelihood estimation (MLE) approach to determine a surrogate respiratory signal from short-time acquisition frames for motion correction. To compensate for the low data counts in the short-time frames, we employ a regularization term to exploit the similarity in acquired data among neighboring acquisition angles. In the experiments we validated this approach first on a set of simulated phantom data with known respiratory motion, and then on clinical acquisitions from 17 subjects. The results demonstrate that the proposed MLE approach could yield a reliable respiratory motion signal even with the acquisition frame duration being as short as 100ms, and outperformed both center-of-mass and Laplacian eigenmaps methods.