Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSMR-4.6
Paper Title KNOWLEDGE-BASED REASONING NETWORK FOR OBJECT DETECTION
Authors Huigang Zhang, Liuan Wang, Jun Sun, Fujitsu R&D Center, Co., LTD, China
SessionSMR-4: Image and Video Sensing, Modeling, and Representation
LocationArea F
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Image and Video Sensing, Modeling, and Representation: Structural-model based methods
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The mainstream object detection algorithms rely on recognizing object instances individually, but do not consider the high-level relationship among objects in context. This will inevitably lead to biased detection results, due to the lack of commonsense knowledge that humans often use to assist the task for object identification. In this paper, we present a novel reasoning module to endow the current detection systems with the power of commonsense knowledge. Specifically, we use graph attention network (GAT) to represent the knowledge among objects. The knowledge covers visual and semantic relations. Through the iterative update of GAT, the object features can be enriched. Experiments on the COCO detection benchmark indicate that our knowledge-based reasoning network has achieved consistent improvements upon various CNN detectors. We achieved 1.9 and 1.8 points higher Average Precision (AP) than Faster-RCNN and Mask-RCNN respectively, when using ResNet50-FPN as backbone.