Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDARS-10.10
Paper Title THE MIND’S EYE: VISUALIZING CLASS-AGNOSTIC FEATURES OF CNNS
Authors Alexandros Stergiou, Utrecht University, Netherlands
SessionARS-10: Image and Video Analysis and Synthesis
LocationArea H
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Image and Video Analysis, Synthesis, and Retrieval: Image & Video Synthesis, Rendering, and Visualization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Visual interpretability of Convolutional Neural Networks (CNNs) has gained significant popularity because of the great challenges that CNN complexity imposes to understanding their inner workings. Although many techniques have been proposed to visualize class features of CNNs, most of them do not provide a correspondence between inputs and the extracted features in specific layers. This prevents the discovery of stimuli that each layer responds better to. We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer. Exploring features in this class-agnostic manner allows for a greater focus on the feature extractor of CNNs. Our method uses a dual-objective activation maximization and distance minimization loss, without requiring a generator network nor modifications to the original model. This limits the number of FLOPs to that of the original network. We demonstrate the visualization quality on widely-used architectures.