Technical Program

ASR III (End-to-End)

Session Type: Poster
Time: Friday, December 21, 10:00 - 12:00
Location: Kallirhoe Hall
 
IMPROVING ATTENTION-BASED END-TO-END ASR SYSTEMS WITH SEQUENCE-BASED LOSS FUNCTIONS
         Jia Cui; Tencent AI Lab
         Chao Weng; Tencent AI Lab
         Guangsen Wang; Tencent AI Lab
         Jun Wang; Tencent AI Lab
         Peidong Wang; The Ohio State University
         Chengzhu Yu; Tencent AI Lab
         Dan Su; Tencent AI Lab
         Dong Yu; Tencent AI Lab
 
COMBINING END-TO-END AND ADVERSARIAL TRAINING FOR LOW-RESOURCE SPEECH RECOGNITION
         Jennifer Drexler; Massachusetts Institute of Technology
         James Glass; Massachusetts Institute of Technology
 
A COMPARISON OF TECHNIQUES FOR LANGUAGE MODEL INTEGRATION IN ENCODER-DECODER SPEECH RECOGNITION
         Shubham Toshniwal; Toyota Technological Institute at Chicago
         Anjuli Kannan; Google
         Chung-Cheng Chiu; Google
         Yonghui Wu; Google
         Tara N. Sainath; Google
         Karen Livescu; Toyota Technological Institute at Chicago
 
ON-DEVICE END-TO-END SPEECH RECOGNITION WITH MULTI-STEP PARALLEL RNNS
         Yoonho Boo; Seoul National University
         Jinhwan Park; Seoul National University
         Lukas Lee; Seoul National University
         Wonyong Sung; Seoul National University
 
DOMAIN ADAPTATION OF END-TO-END SPEECH RECOGNITION IN LOW-RESOURCE SETTINGS
         Lahiru Samarakoon; Fano Labs
         Brian Mak; Hong Kong University of Science and Technology
         Albert Lam; Fano Labs
 
END-TO-END SPEECH RECOGNITION WITH WORD-BASED RNN LANGUAGE MODELS
         Takaaki Hori; Mitsubishi Electric Research Laboratories
         Jaejin Cho; Johns Hopkins University
         Shinji Watanabe; Johns Hopkins University
 
ACOUSTIC-TO-WORD RECOGNITION WITH SEQUENCE-TO-SEQUENCE MODELS
         Shruti Palaskar; Carnegie Mellon University
         Florian Metze; Carnegie Mellon University
 
COMBINING DE-NOISING AUTO-ENCODER AND RECURRENT NEURAL NETWORKS IN END-TO-END AUTOMATIC SPEECH RECOGNITION FOR NOISE ROBUSTNESS
         Tzu-Hsuan Ting; National Sun Yat-sen University
         Chia-Ping Chen; National Sun Yat-sen University
 
IMPROVED KNOWLEDGE DISTILLATION FROM BI-DIRECTIONAL TO UNI-DIRECTIONAL LSTM CTC FOR END-TO-END SPEECH RECOGNITION
         Gakuto Kurata; IBM Research
         Kartik Audhkhasi; IBM Research
 
DEEP CONTEXT: END-TO-END CONTEXTUAL SPEECH RECOGNITION
         Golan Pundak; Google
         Tara N. Sainath; Google
         Rohit Prabhavalkar; Google
         Anjuli Kannan; Google
         Ding Zhao; Google
 
BACK-TRANSLATION-STYLE DATA AUGMENTATION FOR END-TO-END ASR
         Tomoki Hayashi; Nagoya University
         Shinji Watanabe; Johns Hopkins University
         Yu Zhang; Google
         Tomoki Toda; Nagoya University
         Takaaki Hori; Mitsubishi Electric Research Laboratories
         Ramon Astudillo; INESC-ID-Lisboa
         Kazuya Takeda; Nagoya University
 
DIALOG-CONTEXT AWARE END-TO-END SPEECH RECOGNITION
         Suyoun Kim; Carnegie Mellon University
         Florian Metze; Carnegie Mellon University