Technical Program

Paper Detail

Presentation #12
Session:ASR III (End-to-End)
Location:Kallirhoe Hall
Session Time:Friday, December 21, 10:00 - 12:00
Presentation Time:Friday, December 21, 10:00 - 12:00
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: DIALOG-CONTEXT AWARE END-TO-END SPEECH RECOGNITION
Authors: Suyoun Kim, Florian Metze, Carnegie Mellon University, United States
Abstract: Existing speech recognition systems are typically built at the sentence level, although it is known that dialog context, e.g. higher-level knowledge that spans across sentences or speakers, can help the processing of long conversations. The recent progress in end-to-end speech recognition systems promises to integrate all available information (e.g. acoustic, language resources) into a single model, which is then jointly optimized. It seems natural that such dialog context information should thus also be integrated into the end-to-end models to improve recognition accuracy further. In this work, we present a dialog-context aware speech recognition model, which explicitly uses context information beyond sentence-level information, in an end-to-end fashion. Our dialog-context model captures a history of sentence-level contexts so that the whole system can be trained with dialog-context information in an end-to-end manner. We evaluate our proposed approach on the Switchboard conversational speech corpus and show that our system outperforms a comparable sentence-level end-to-end speech recognition system.