2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)
Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICASSP 2021 Open Preview.

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

MLSP-13: Federated Learning 2

Session Type: Poster
Time: Wednesday, 9 June, 13:00 - 13:45
Location: Gather.Town
Session Chair: Rainer Martin, Ruhr-Universität Bochum
 
   MLSP-13.1: CROSS-SILO FEDERATED TRAINING IN THE CLOUD WITH DIVERSITY SCALING AND SEMI-SUPERVISED LEARNING
         Kishore Nandury; Amazon
         Anand Mohan; Amazon
         Frederick Weber; Amazon
 
   MLSP-13.2: GRADUAL FEDERATED LEARNING USING SIMULATED ANNEALING
         Luong Trung Nguyen; Seoul National University
         Byonghyo Shim; Seoul National University
 
   MLSP-13.3: OPTIMAL IMPORTANCE SAMPLING FOR FEDERATED LEARNING
         Elsa Rizk; Ecole Polytechnique Fédérale de Lausanne (EPFL)
         Stefan Vlaski; Ecole Polytechnique Fédérale de Lausanne (EPFL)
         Ali H. Sayed; Ecole Polytechnique Fédérale de Lausanne (EPFL)
 
   MLSP-13.4: MULTI-TIER FEDERATED LEARNING FOR VERTICALLY PARTITIONED DATA
         Anirban Das; Rensselaer Polytechnic Institute
         Stacy Patterson; Rensselaer Polytechnic Institute
 
   MLSP-13.5: ENERGY MINIMIZATION FOR FEDERATED LEARNING WITH IRS-ASSISTED OVER-THE-AIR COMPUTATION
         Yuntao Hu; Southeast University
         Ming Chen; Southeast University
         Mingzhe Chen; Princeton University
         Zhaohui Yang; King's College London
         Mohammad Shikh-Bahaei; King's College London
         H. Vincent Poor; Princeton University
         Shuguang Cui; the Chinese University of Hong Kong
 
   MLSP-13.6: ADAPTIVE QUANTIZATION OF MODEL UPDATES FOR COMMUNICATION-EFFICIENT FEDERATED LEARNING
         Divyansh Jhunjhunwala; Carnegie Mellon University
         Advait Gadhikar; Carnegie Mellon University
         Gauri Joshi; Carnegie Mellon University
         Yonina C. Eldar; Weizmann Institute of Science