2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-13.3
Paper Title OPTIMAL IMPORTANCE SAMPLING FOR FEDERATED LEARNING
Authors Elsa Rizk, Stefan Vlaski, Ali H. Sayed, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
SessionMLSP-13: Federated Learning 2
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DFED] Distributed/Federated learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Federated learning involves a mixture of centralized and decentralized processing tasks, where a server regularly selects a sample of the agents, and these in turn sample their local data to compute stochastic gradients for their learning updates. The sampling of both agents and data is generally uniform; however, in this work we consider non-uniform sampling. We derive optimal importance sampling strategies for both agent and data selection and show that under convexity and Lipschitz assumptions, non-uniform sampling without replacement improves the performance of the original FedAvg algorithm. We run experiments on a regression and classification problem to illustrate the theoretical results.