
CONVOLUTIONAL LAPLACIAN SPARSE CODING

Xiyang Luo∗

Department of Mathematics
University of California, Los Angeles

Los Angeles, CA, United States

Brendt Wohlberg†

Theoretical Division
Los Alamos National Laboratory
Los Alamos, NM, United States

ABSTRACT
We propose to extend the the standard convolutional sparse
representation by combining it with a non-local graph Lapla-
cian term. This additional term is chosen to address some of
the deficiencies of the `1 norm in regularizing these represen-
tations, and is shown to have an advantage in both dictionary
learning and an example image reconstruction problem.

Index Terms— Sparse Representation, Convolutional
Sparse Coding, Laplacian Sparse Coding

1. INTRODUCTION

Convolutional sparse coding [1] is a relatively recent variant
of sparse coding in which an entire signal or image is decom-
posed into a sum of convolutions of a set of coefficient maps,
each of the same size as the input signal or image, with a
corresponding dictionary filter. One of the most prominent
formulations of this problem is Convolutional Basis Pursuit
DeNoising (CBPDN)

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1 , (1)

where {dm} is a set of M dictionary filters, ∗ denotes con-
volution, and {xm} is a set of coefficient maps. Recent fast
algorithms [2, 3, 4] for solving this problem have begun to
make it a viable approach for a wider variety of applications.

Convolutional sparse representations have a number of
advantages over the standard approach of independently
sparse coding of overlapping image patches, including pro-
viding a single-valued representation that is optimal over the
entire image instead of just locally within each patch. There
are, however, also some challenges to using this represen-
tation, aside from the computational cost. One of these is
the tendency for the set of coefficient maps to be sparse both
down the stack of maps at each pixel location, as well as
spatially within each map. This latter property is undesir-
able in some applications, including denoising of Gaussian
∗The work of both authors was supported by the UC Lab Fees Research

grant 12-LR-236660.
†The work of Wohlberg was also supported by the U.S. Department of

Energy through the LANL/LDRD Program.

white noise, where the spatial averaging of independent pixel
estimates obtained from the standard patch-based method is
beneficial, or in dictionary learning where high spatial spar-
sity reduces the number of patches in the training images that
play a role in forming the dictionary. The work reported here
represents an attempt to remedy this weakness by incorporat-
ing a non-local regularization that reduces the spatial sparsity
in an appropriate way, while retaining the local sparsity of the
representation at each pixel location.

2. CONVOLUTIONAL LAPLACIAN SPARSE
CODING

We propose to construct an image non-local graph and aug-
ment Eq. (1) with the graph Dirichlet energy

∑
m〈xm, Lxm〉,

where L is the graph Laplacian [5] of the image non-local
graph [6]. Each image patch corresponds to a vertex of the
graph, and the weights wij between vertices represent the
similarity between the corresponding image patches, typically
computed as

wij = exp
(
−d2ij/τ

)
, (2)

where dij is some metric (typical choices are Euclidean or
Cosine) between an image patch centered at pixel i and that
at pixel j , and τ controls the scaling of the metric. Given
the weight matrix W = (wij), the graph Laplacian L is
defined as L = D − W , where D is the diagonal matrix
Dii =

∑
i 6=j wij . Our model is motivated by the non-local

smoothing properties of the Dirichlet energy, which are ap-
parent from the equation

〈u, Lu〉 =
∑
α,β∈V

wαβ(uα − uβ)2 . (3)

Here α, β range through all vertices on the graph, and u is
any real-valued function defined on the graph. Since wαβ
is smaller if the vertices α, β are more similar, the Dirichlet
energy will be small if similar vertices have similar u values.

In our context, the vertices α are image patches indexed
by their spatial location (i, j), and the u corresponds to the
sparse coefficients xm. Thus by the analysis above, the regu-
larizer is an explicit penalty to force similar image patches
to have similar sparse representations. We must point out



that in practice, we actually use the normalized Laplacian
Ls = I −D−1/2WD−1/2 [5], since it handles outliers better
and is the more common choice for non-local image graphs.
However, the motivation remains the same and we will not
make a distinction from here on.

Formally, our model can be written as

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1

+
µ

2

∑
m

〈xm, Lxm〉 . (4)

This model can be considered as a convolutional variant of the
previously-proposed Laplacian Sparse Coding method [7],
which has been applied to image classification tasks [7, 8] as
well as image restoration tasks [9, 10]. The key difference
between the proposed approach and the patch based Lapla-
cian Sparse Coding in [7] is that the sparse code is learned
over every single patch and jointly over the entire image, due
to the inherent properties of the convolutional model. Thus
unlike [7, 8], there is no need to use the SIFT local descriptor
to predefine a set of patches to learn on, and there is no need
for patch averaging to resolve the multi-valued estimation as
in [9].

3. ALGORITHM
Our two alternative algorithms for solving Eq. (4) are both
based on the Alternating Direction Method of Multipliers
(ADMM) [11] framework. Their differences correspond to
whether we perform an additional splitting in 〈xm, Lxm〉, or
include it in the `1 subproblem.

3.1. ADMM Double-Split
In this approach, we perform an additional splitting to give

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖ym‖1 +

µ

2

∑
m

〈zm, Lzm〉 s.t. xm = ym, xm = zm . (5)

The corresponding ADMM primal updates are

{xm}(j+1) = argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+

ρ
∑
m

∥∥∥xm − 1

2

(
u(j)
m + y(j)

m + v(j)
m + z(j)m

)∥∥∥2
2

(6)

{ym}(j+1) = argmin
{ym}

λ
∑
m

‖ym‖1 +

ρ

2

∑
m

∥∥∥x(j+1)
m − (ym + u(j)

m )
∥∥∥2
2

(7)

{zm}(j+1) = argmin
{zm}

µ

2

∑
m

〈zm, Lzm〉+

ρ

2

∑
m

∥∥∥zm − (x(j+1)
m + v(j)

m )
∥∥∥2
2
. (8)

The xm and ym updates are the same as in the standard
convolutional learning case, and can be efficiently solved in
the Fourier domain and by soft thresholding respectively, as
in [2, 3]. The zm update involves solving a linear system.

It is worth emphasizing that, despite the double splitting,
this algorithm can be expressed in the standard ADMM form
if the two split variables are appropriately combined in block
form by defining the matrix A mapping x 7→ (x,x)T and
u = (y, z)T , and imposing the constraint um = Axm.

3.2. ADMM Single-Split

Instead of performing an additional splitting, we can also
group the Laplacian term together with the `1 term and solve
an `2 + `1 minimization as a sub-problem. The resulting
iterations are

{xm}(j+1) = argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+

ρ

2

∑
m

∥∥∥xm − y(j)
m − u(j)

m

∥∥∥2
2

(9)

{ym}(j+1) = argmin
{ym}

λ
∑
m

‖ym‖1 +
µ

2

∑
m

〈ym, Lym〉

ρ

2

∑
m

∥∥∥x(j+1)
m − ym − u(j)

m

∥∥∥2
2
. (10)

An efficient implementation of the algorithm is obtained
by warm-starting the ym sub-problem from the previous it-
erate. Moreover, each sub-problem can be solved inexactly
with an adaptive tolerance εn compatible with the primal
and dual residuals of the main ADMM iteration (we choose
εk = max{rk, sk}/10). Finally, the ym problem itself can be
solved via a standard algorithms such as ADMM or FISTA.

3.3. Eigenspace Decomposition

A common trick when dealing with graph Laplacian is to
decompose L in the spectral domain, diagonalizing L using
its eigenbasis {ek}k∈{1,...,n}. Using this formulation, iter-
ates involving L can be computed explicitly by computing
inner products with eigenvectors. For example, the z update
of Eq. (8) becomes:

zm =
∑
k

ρ

ρ+ µλk
〈xm + vm, ek〉ek , (11)

where λk is the k-th eigenvalue of L corresponding to ek.
This approach would still be infeasible if we were to compute
all the eigenvectors of L, but for many non-local graphs de-
rived from images, most of the larger eigenvalues are indeed
close to unity, if the graph Laplacian is normalized. Thus
only the smallest few eigenvectors are needed to approximate
the matrix L. This technique, called spectral truncation, has
been successfully applied in graph cut algorithms for cluster-
ing [12, 13].



3.4. Speed of Algorithms

Here we compare the computational performance of various
algorithm options. We have a choice of using eigenvectors or
using the full matrix, and also using ADMM double-split or
ADMM single-split for the main algorithm, giving a total of
four combinations. We test each one on a set of problems of
varying sizes, and plot the total convergence time relative to
that of standard convolutional sparse coding (e.g. 2.0 means
it takes twice as long to converge as the standard algorithm).
The relative residual stopping tolerance [11] is set to 10−3.
All algorithms are tested on the same image with the same
parameters λ = 0.1, µ = 0.1 except for the standard convo-
lutional case, which is tested with λ = 0.1. As Figures 1

Double split
Single split

Number of eigenvectors

R
el

at
iv

e
tim

e

400350300250200150100

4.0

3.5

3.0

2.5

2.0

1.5

Fig. 1. Eigenvector Time Test

Double split
Single split

Number of neighborhoods

R
el

at
iv

e
tim

e

50454035302520

8.0

7.0

6.0

5.0

4.0

3.0

2.0

Fig. 2. Full Matrix Time Test

and 2 show, ADMM double-split is faster when using eigen-
vector truncation, and single-split is faster when using the full
matrix. This discrepancy is due to different implementations
of the {zm} update in ADMM double-split. In the full matrix
case, {zm} is updated by solving a symmetric linear system
which can be costly, while in the eigenvector case the update
only involves inner products with the eigenvectors.

3.5. Efficient Graph Computation

In general, it is too computationally expensive to generate the
full non-local graph of the image. One way to deal with this
is to use eigenvector decomposition as described in Sec. 3.3.
Since only the first few eigenvectors are needed, it makes
sense to use an algorithm that computes the eigenvectors
without constructing the full graph. We use the Nystrom
Extension [14], a sampling strategy used to compute an ap-
proximation to the true eigenvectors. Error bounds for the
Nystrom Extension have been studied in [15].

There are cases where too many eigenvectors are needed
to accurately reflect the full graph Laplacian. In this case, we
have to resort to using the full matrix L. A straightforward
way to reduce cost is to sparsify the graph. Graph sparsifi-
cation can be done via building a k-nearest neighbor graph
or spatial localization, i.e., to restrict connections of pixels to
only its spatial neighborhood.

An interesting observation is that the case where too
many eigenvectors are needed often occurs when the graph is
too disconnected, i.e., sparse. This suggests a guideline for
choosing the best algorithm: if we intend the graph to be well
connected, use eigenvector decomposition; otherwise, use a
sparse Laplacian.

4. RESULTS

4.1. Image Inpainting

Laplacian convolutional sparse coding can improve the per-
formance of image inpainting compared to standard convo-
lutional sparse coding. The model for inpainting using the
standard convolutional sparse coding is

argmin
{xm,z1,z2}

1

2

∥∥∥∑
m

dm ∗ xm + z1 + z2 − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1

+
∑
i

χ(i)z1(i) +
ν

2
‖∇z2‖22 , (12)

where χ(i) = 0 if i is a missing pixel, and +∞ otherwise.
Here s will be the corrupted image, z1 will absorb the missing
pixel values, z2 will be a low frequency component of the
image1, and the reconstruction will be srec =

∑
m

dm∗xm+z2.

The corresponding model for the Laplacian case is

argmin
{xm,z1,z2}

1

2

∥∥∥∑
m

dm ∗ xm + z1 + z2 − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1

+
∑
i

χ(i)z1(i) +
µ

2

∑
m

〈xm, Lxm〉+
ν

2
‖∇z2‖22 . (13)

We use the standard model Eq. (12) to inpaint the image first
to construct the graph Laplacian L.

1Employed here for similar reasons to the usual subtraction of the patch
mean in patch based sparse coding.



Standard
Laplacian

Missing pixel fraction

PS
N

R
(d

B
)

0.750.700.650.600.550.500.450.40

40

39

38

37

36

35

34

Fig. 3. Lena Inpainting Comparison

Standard
Laplacian

Missing pixel fraction

PS
N

R
(d

B
)

0.750.700.650.600.550.500.450.40

40

39

38

37

36

35

34

Fig. 4. Straw Inpainting Comparison

Inpainting is tested on the 512×512 “Lena” image with
various corruption levels. A parameter search on λ and ν is
done first to produce the best performance for the standard
model. The same set of parameters is then used for the Lapla-
cian model with µ set to 0.1, which has proved empirically to
be a good choice. A globally trained 12×12×36 dictionary is
used for coding. A K-Nearest neighbor graph with K = 40
is constructed using the cosine distance metric. A compar-
ison of PSNR values for both cases is given in Fig. 3. The
Laplacian model is consistently better than the standard con-
volutional model for all noise levels, with an average PSNR
increase of around 0.85 dB.

Interestingly, the Laplacian model yields better perfor-
mance for images with more structural similarity. If we re-
peat the same experiment on “Straw”, a texture-rich image
consisted of vertically aligned straws [16], the average PSNR
increase is around 1 dB, as shown in Fig. 4. More importantly,
the performance gap is wider for the “Straw” image when the
corruption level is higher, showing that the model has better
performance on images with more structural similarity.

4.2. Dictionary Learning

Dictionary learning with the graph Laplacian regularizer can
be achieved by adding a constraint ‖dm‖ ≤ 1 to Eq.(4) and
updating d and x in a interleaved manner, as in [3]. In some
applications it is desirable to train dictionaries from images
corrupted by Gaussian white noise. Convolutional dictionary
learning has relatively poor resistance to noise in the training
images due to the homogeneous treatment of spatial sparsity
down the stack that is inherent in the L1 regularizer. This
is substantially improved by incorporating the graph Lapla-
cian regularization proposed here. This property is illustrated
in Fig. 5 and 6. The dictionaries are trained on 5 randomly se-
lected images from the MIRFlickr dataset [17]. This improve-
ment is due to the nonzero coefficients of the Laplacian model
having more spatial structure when given the same amount of
sparsity as a result of the non-local smoothing effect of the
graph Laplacian.

Fig. 5. Best Standard Dictionary for N = 20

Fig. 6. Best Laplacian Dictionary for N = 20

5. CONCLUSIONS

We have proposed a modified form of Convolutional BPDN
that includes an additional regularization term based on the
Laplacian of the image non-local graph. Two algorithm vari-
ants have been developed for solving the resulting optimiza-
tion problem, and initial experiments indicate that the modi-
fied form provides some advantages in both dictionary learn-
ing and image restoration applications.



6. REFERENCES

[1] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fer-
gus, “Deconvolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), June 2010, pp.
2528–2535. doi:10.1109/cvpr.2010.5539957

[2] B. Wohlberg, “Efficient convolutional sparse cod-
ing,” in Proc. IEEE Int. Conf. Acoust. Speech Sig-
nal Process. (ICASSP), May 2014, pp. 7173–7177.
doi:10.1109/ICASSP.2014.6854992

[3] ——, “Efficient algorithms for convolutional sparse rep-
resentations,” IEEE Transactions on Image Processing,
2015. doi:10.1109/TIP.2015.2495260

[4] ——, “SParse Optimization Research COde
(SPORCO),” Matlab library available from
http://math.lanl.gov/∼brendt/Software/SPORCO/,
2015, version 0.0.2.

[5] U. Von Luxburg, “A tutorial on spectral clustering,”
Statistics and computing, vol. 17, no. 4, pp. 395–416,
2007.

[6] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and
A. Zisserman, “Non-local sparse models for im-
age restoration,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2009, pp. 2272–2279.
doi:10.1109/iccv.2009.5459452

[7] S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao, “Lo-
cal features are not lonely – Laplacian sparse coding for
image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2010, pp. 3555–3561.

[8] S. Gao, I. W.-H. Tsang, and L.-T. Chia, “Laplacian
sparse coding, hypergraph Laplacian sparse coding, and
applications,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 92–104,
2013.

[9] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu,
and D. Cai, “Graph regularized sparse coding for image
representation,” IEEE Transactions on Image Process-
ing, vol. 20, no. 5, pp. 1327–1336, 2011.

[10] W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based
image denoising via dictionary learning and structural
clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2011, pp. 457–464.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Founda-
tions and Trends in Machine Learning, vol. 3, no. 1, pp.
1–122, 2010. doi:10.1561/2200000016

[12] A. L. Bertozzi and A. Flenner, “Diffuse interface models
on graphs for classification of high dimensional data,”
Multiscale Modeling & Simulation, vol. 10, no. 3, pp.
1090–1118, 2012.

[13] E. Merkurjev, E. Bae, A. L. Bertozzi, and X.-C. Tai,
“Global binary optimization on graphs for classifica-
tion of high-dimensional data,” Journal of Mathematical
Imaging and Vision, vol. 52, no. 3, pp. 414–435, 2015.

[14] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spec-
tral grouping using the Nystrom method,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 2, pp. 214–225, 2004.

[15] A. Gittens, “The spectral norm error of the naive Nys-
trom extension,” arXiv preprint arXiv:1110.5305, 2011.

[16] “Image of Vertical Straw Texture,” http://texturee.
deviantart.com/art/Straw-Texture-260793536 (Nov.
2015).

[17] M. J. Huiskes and M. S. Lew, “The MIR Flickr retrieval
evaluation,” in Proc. 1st ACM Intl. Conf. on Multimedia
Information Retrieval, 2008, pp. 39–43.

http://dx.doi.org/10.1109/cvpr.2010.5539957
http://dx.doi.org/10.1109/ICASSP.2014.6854992
http://dx.doi.org/10.1109/TIP.2015.2495260
http://math.lanl.gov/~brendt/Software/SPORCO/
http://dx.doi.org/10.1109/iccv.2009.5459452
http://dx.doi.org/10.1561/2200000016
http://texturee.deviantart.com/art/Straw-Texture-260793536
http://texturee.deviantart.com/art/Straw-Texture-260793536

