Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #3
Session:Deep Learning for Speech Synthesis
Session Time:Tuesday, December 18, 14:00 - 17:00
Presentation Time:Tuesday, December 18, 14:00 - 17:00
Presentation: Invited talk, Discussion, Oral presentation, Poster session
Topic: Special session on Speech Synthesis:
Paper Title: SCALING AND BIAS CODES FOR MODELING SPEAKER-ADAPTIVE DNN-BASED SPEECH SYNTHESIS SYSTEMS
Authors: Hieu-Thi Luong; National Institute of Informatics 
 Junichi Yamagishi; National Institute of Informatics 
Abstract: Most neural-network based speaker-adaptive acoustic models for speech synthesis can be categorized into either layer-based or input-code approaches. Although both approaches have their own pros and cons, most existing works on speaker adaptation focus on improving one or the other. In this paper, after we first systematically overview the common principles of neural-network based speaker-adaptive models, we show that these approaches can be represented in a unified framework and can be generalized further. More specifically, we introduce the use of scaling and bias codes as generalized means for speaker-adaptive transformation. By utilizing these codes, we can create a more efficient factorized speaker-adaptive model and capture advantages of both approaches while reducing their disadvantages. The experiments show that the proposed method can improve the performance of speaker adaptation compared with speaker adaptation based on the conventional input code.