Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #8
Session:Voice Conversion and TTS
Session Time:Friday, December 21, 10:00 - 12:00
Presentation Time:Friday, December 21, 10:00 - 12:00
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: DATA SELECTION FOR IMPROVING NATURALNESS OF TTS VOICES TRAINED ON SMALL FOUND CORPUSES
Authors: Fang-Yu Kuo; ObEN, Inc. 
 Sandesh Aryal; ObEN, Inc. 
 Gilles Degottex; ObEN, Inc. 
 Sam Kang; ObEN, Inc. 
 Pierre Lanchantin; ObEN, Inc. 
 Iris Ouyang; ObEN, Inc. 
Abstract: This work investigates techniques that select training data from small, found corpuses in order to improve the naturalness of synthesized text-to-speech voices. The approach outlined in this paper examines different metrics to detect and reject segments of training data that can degrade the performance of the system. We conducted experiments on two small datasets extracted from Mandarin Chinese audiobooks that have different characteristics in terms of recording conditions, narrator, and transcriptions. We show that using a even smaller, yet carefully selected, set of data can lead to a text-to-speech system able to generate more natural speech than a system trained on the complete dataset. Three metrics related to the narrator's articulation proposed in the paper give significant improvements in naturalness.