Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #5
Session:Voice Conversion and TTS
Session Time:Friday, December 21, 10:00 - 12:00
Presentation Time:Friday, December 21, 10:00 - 12:00
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: AN EVALUATION OF DEEP SPECTRAL MAPPINGS AND WAVENET VOCODER FOR VOICE CONVERSION
Authors: Patrick Lumban Tobing; Nagoya University 
 Tomoki Hayashi; Nagoya University 
 Yi-Chiao Wu; Nagoya University 
 Kazuhiro Kobayashi; Nagoya University 
 Tomoki Toda; Nagoya University 
Abstract: This paper presents an evaluation of deep spectral mapping and WaveNet vocoder in voice conversion (VC). In our VC framework, spectral features of an input speaker are converted into those of a target speaker using the deep spectral mapping, and then together with the excitation features, the converted waveform is generated using WaveNet vocoder. In this work, we compare three different deep spectral mapping networks, i.e., a deep single density network (DSDN), a deep mixture density network (DMDN), and a long short-term memory recurrent neural network with an autoregressive output layer (LSTM-AR). Moreover, we also investigate several methods for reducing mismatches of spectral features used in WaveNet vocoder between training and conversion processes, such as some methods to alleviate oversmoothing effects of the converted spectral features, and another method to refine WaveNet using the converted spectral features. The experimental results demonstrate that the LSTM-AR yields nearly better spectral mapping accuracy than the others, and the proposed WaveNet refinement method significantly improves the naturalness of the converted waveform.