Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #4
Session:Deep Learning for Speech Synthesis
Session Time:Tuesday, December 18, 14:00 - 17:00
Presentation Time:Tuesday, December 18, 14:00 - 17:00
Presentation: Invited talk, Discussion, Oral presentation, Poster session
Topic: Speech recognition and synthesis:
Paper Title: HIERARCHICAL RNNS FOR WAVEFORM-LEVEL SPEECH SYNTHESIS
Authors: Qingyun Dou; University of Cambridge 
 Moquan Wan; University of Cambridge 
 Gilles Degottex; University of Cambridge 
 Zhiyi Ma; University of Cambridge 
 Mark Gales; University of Cambridge 
Abstract: Speech synthesis technology has a wide range of applications such as voice assistants. In recent years waveform-level synthesis systems have achieved state-of-the-art performance, as they overcome the limitations of vocoder-based synthesis systems. A range of waveform-level synthesis systems have been proposed; this paper investigates the performance of hierarchical Recurrent Neural Networks (RNNs) for speech synthesis. First, the form of network conditioning is discussed, comparing linguistic features and vocoder features from a vocoder-based synthesis system. It is found that compared with linguistic features, conditioning on vocoder features requires less data and modeling power, and yields better performance when there is limited data. By conditioning the hierarchical RNN on vocoder features, this paper develops a neural vocoder, which is capable of high quality synthesis when there is sufficient data. Furthermore, this neural vocoder is flexible, as conceptually it can map any sequence of vocoder features to speech, enabling efficient synthesizer porting to a target speaker. Subjective listening tests demonstrate that the neural vocoder outperforms a high quality baseline, and that it can change its voice to a very different speaker, given less than 15 minutes of data for fine tuning.