Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #11
Session:ASR IV
Session Time:Friday, December 21, 13:30 - 15:30
Presentation Time:Friday, December 21, 13:30 - 15:30
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: AUDIO-VISUAL SPEECH RECOGNITION WITH A HYBRID CTC/ATTENTION ARCHITECTURE
Authors: Stavros Petridis; Imperial College London 
 Themos Stafylakis; University of Nottingham 
 Pingchuan Ma; Imperial College London 
 Georgios Tzimiropoulos; University of Nottingham 
 Maja Pantic; Imperial College London 
Abstract: Recent works in speech recognition rely either on connectionist temporal classification (CTC) or sequence-to-sequence models for character-level recognition. CTC assumes conditional independence of individual characters, whereas attention-based models can provide nonsequential alignments. Therefore, we could use a CTC loss in combination with an attention-based model in order to force monotonic alignments and at the same time get rid of the conditional independence assumption. In this paper, we use the recently proposed hybrid CTC/attention architecture for audio-visual recognition of speech in-the-wild. To the best of our knowledge, this is the first time that such a hybrid architecture architecture is used for audio-visual recognition of speech. We use the LRS2 database and show that the proposed audio-visual model leads to an 1.3% absolute decrease in word error rate over the audio-only model and achieves the new state-of-the-art performance on LRS2 database (7% word error rate). We also observe that the audio-visual model significantly outperforms the audio-based model (up to 32.9% absolute improvement in word error rate) for several different types of noise as the signal-to-noise ratio decreases.