Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #7
Session:Natural Language Processing
Session Time:Thursday, December 20, 13:30 - 15:30
Presentation Time:Thursday, December 20, 13:30 - 15:30
Presentation: Poster
Topic: Natural language processing:
Paper Title: INVESTIGATING LINGUISTIC PATTERN ORDERING IN HIERARCHICAL NATURAL LANGUAGE GENERATION
Authors: Shang-Yu Su; National Taiwan University 
 Yun-Nung Chen; National Taiwan University 
Abstract: Natural language generation (NLG) is a critical component in spoken dialogue system, which can be divided into two phases: (1) sentence planning: deciding the overall sentence structure, (2) surface realization: determining specific word forms and flattening the sentence structure into a string. With the rise of deep learning, most modern NLG models are based on a sequence-to-sequence (seq2seq) model, which basically contains an encoder-decoder recurrent neural network (RNN); these NLG models generate sentences from scratch by jointly optimizing sentence planning and surface realization. However, such simple encoder-decoder architecture usually fail to generate complex and long sentences, because the decoder has difficulty learning all grammar and diction knowledge well. This paper introduces an NLG model with a hierarchical attentional decoder, where the hierarchy focuses on leveraging linguistic knowledge in a specific order. The experiments show that the proposed method significantly outperforms the traditional seq2seq model with a smaller model size, and the design of the hierarchical attentional decoder can be applied to various NLG systems. Furthermore, different generation strategies based on linguistic patterns are investigated and discussed in order to guide future NLG research work.