Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #18
Session:ASR IV
Session Time:Friday, December 21, 13:30 - 15:30
Presentation Time:Friday, December 21, 13:30 - 15:30
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: A STUDY ON SPEECH ENHANCEMENT USING EXPONENT-ONLY FLOATING POINT QUANTIZED NEURAL NETWORK (EOFP-QNN)
Authors: Yi-Te Hsu; Academia Sinica 
 Yu-Chen Lin; National Taiwan University 
 Szu-Wei Fu; National Taiwan University 
 Yu Tsao; Academia Sinica 
 Tei-Wei Kuo; National Taiwan University 
Abstract: Numerous studies have investigated the effectiveness of neural network quantization on pattern classification tasks. The present study, for the first time, investigated the performance of speech enhancement (a regression task in speech processing) using a novel exponent-only floating-point quantized neural network (EOFP-QNN). The proposed EOFP-QNN consists of two stages: mantissa-quantization and exponent-quantization. In the mantissa-quantization stage, EOFP-QNN learns how to quantize the mantissa bits of the model parameters while preserving the regression accuracy in the least mantissa precision. In the exponent-quantization stage, the exponent part of the parameters is further quantized without any additional performance degradation. We evaluated the proposed EOFP quantization technique on two types of neural networks, namely, bidirectional long short-term memory (BLSTM) and fully convolutional neural network (FCN), on a speech enhancement task. Experimental results showed that the model sizes can be significantly reduced (the model sizes of the quantized BLSTM and FCN models were only 18.75% and 21.89%, respectively, compared to those of the original models) while maintaining a satisfactory speech-enhancement performance.