Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #1
Session:Detection, Paralinguistics and Coding
Session Time:Wednesday, December 19, 13:30 - 15:30
Presentation Time:Wednesday, December 19, 13:30 - 15:30
Presentation: Poster
Topic: Speaker/language recognition:
Paper Title: EXPLORING END-TO-END ATTENTION-BASED NEURAL NETWORKS FOR NATIVE LANGUAGE IDENTIFICATION
Authors: Rutuja Ubale; Educational Testing Service Research 
 Yao Qian; Educational Testing Service Research 
 Keelan Evanini; Educational Testing Service Research 
Abstract: Automatic identification of speakers' native language (L1) based on their speech in a second language (L2) is a challenging research problem that can aid several spoken language technologies such as automatic speech recognition (ASR), speaker recognition, and voice biometrics in interactive voice applications. End-to-end learning, in which the features and the classification model are learned jointly in a single system, is an emerging field in the areas of speech recognition, speaker verification and spoken language understanding. In this paper, we present our study on attention-based end-to-end modeling for native language identification on a database of 11 different L1s. Using this methodology, we can determine the native language of the speaker directly from the raw acoustic features. Experimental results from our study show that our best end-to-end model can achieve promising results by capturing speech commonalities across L1s using an attention mechanism. In addition, fusion of proposed systems with the baseline system leads to significant performance improvements.