Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #4
Session:ASR III (End-to-End)
Session Time:Friday, December 21, 10:00 - 12:00
Presentation Time:Friday, December 21, 10:00 - 12:00
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: ON-DEVICE END-TO-END SPEECH RECOGNITION WITH MULTI-STEP PARALLEL RNNS
Authors: Yoonho Boo; Seoul National University 
 Jinhwan Park; Seoul National University 
 Lukas Lee; Seoul National University 
 Wonyong Sung; Seoul National University 
Abstract: Most of the current automatic speech recognition is performed on a remote server. However, the demand for speech recognition on personal devices is increasing, owing to the requirement of shorter recognition latency and increased privacy. End-to-end speech recognition that employs recurrent neural networks (RNNs) shows good accuracy, but the execution of conventional RNNs, such as the long short-term memory (LSTM) or gated recurrent unit (GRU), demands many memory accesses, thus hindering its real-time execution on smart-phones or embedded systems. To solve this problem, we built an end-to-end acoustic model (AM) using linear recurrent units instead of LSTM or GRU and employed a multi-step parallel approach for reducing the number of DRAM accesses. The AM is trained with the connectionist temporal classification (CTC) loss, and the decoding is conducted using weighted finite-state transducers (WFSTs). The proposed system achieves x4.8 real-time speed when executed on a single core of an ARM CPU-based system.