Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #7
Session:ASR IV
Session Time:Friday, December 21, 13:30 - 15:30
Presentation Time:Friday, December 21, 13:30 - 15:30
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: HIERARCHICAL MULTITASK LEARNING WITH CTC
Authors: Ramon Sanabria; Carnegie Mellon University 
 Florian Metze; Carnegie Mellon University 
Abstract: In Automatic Speech Recognition, it is still challenging to learn useful intermediate representations when using high-level (or abstract) target units such as words. For that reason, when only a few hundreds of hours of training data are available, character or phoneme-based systems tend to outperform word-based systems. In this paper, we show how Hierarchical Multitask Learning can encourage the formation of useful intermediate representations. We achieve this by performing Connectionist Temporal Classification at different levels of the network with targets of different granularity. Our model thus performs predictions in multiple scales for the same input. On the standard 300h Switchboard training setup, our hierarchical multitask architecture demonstrates improvements over single-task architectures with the same number of parameters. Our model obtains 14.0% Word Error Rate on the Switchboard subset of the Eval2000 test set without any decoder or language model, outperforming the current state-of-the-art on non-autoregressive acoustic-to-word models.