Presentation # | 6 |
Session: | Detection, Paralinguistics and Coding |
Session Time: | Wednesday, December 19, 13:30 - 15:30 |
Presentation Time: | Wednesday, December 19, 13:30 - 15:30 |
Presentation: |
Poster
|
Topic: |
Emotion recognition from speech: |
Paper Title: |
POSTERIOR CALIBRATION FOR MULTI-CLASS PARALINGUISTIC CLASSIFICATION |
Authors: |
Gábor Gosztolya; MTA-SZTE Research Group on Artificial Intelligence | | |
| Róbert Busa-Fekete; Yahoo Research Inc. | | |
Abstract: |
Computational paralinguistics is an area which contains diverse classification tasks. In many cases the class distribution of these tasks is highly imbalanced by nature, as the phenomena needed to detect in human speech do not occur uniformly. To ignore this imbalance, it is common to measure the efficiency of classification approaches via the Unweighted Average Recall (UAR) metric in this area. However, general classification methods such as Support-Vector Machines (SVM) and Deep Neural Networks (DNNs) were shown to focus on traditional classification accuracy, which might lead to a suboptimal performance for imbalanced datasets. In this study we show that by performing posterior calibration, this effect can be countered and the UAR scores obtained might be improved. Our approach led to relative error reduction values of 4% and 14% on the test set of two multi-class paralinguistic datasets that had imbalanced class distributions, outperforming the traditional downsampling. |