Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #10
Session:Detection, Paralinguistics and Coding
Session Time:Wednesday, December 19, 13:30 - 15:30
Presentation Time:Wednesday, December 19, 13:30 - 15:30
Presentation: Poster
Topic: Multimodal processing:
Paper Title: AMERICAN SIGN LANGUAGE FINGERSPELLING RECOGNITION IN THE WILD
Authors: Bowen Shi; Toyota Technological Institute at Chicago 
 Aurora Martinez Del Rio; University of Chicago 
 Jonathan Keane; University of Chicago 
 Jonathan Michaux; Toyota Technological Institute at Chicago 
 Diane Brentari; University of Chicago 
 Greg Shakhnarovich; Toyota Technological Institute at Chicago 
 Karen Livescu; Toyota Technological Institute at Chicago 
Abstract: We address the problem of American Sign Language fingerspelling recognition ``in the wild'', using videos collected from websites. We introduce the largest data set available so far for the problem of fingerspelling recognition, and the first using naturally occurring video data. Using this data set, we present the first attempt to recognize fingerspelling sequences in this challenging setting. Unlike prior work, our video data is extremely challenging due to low frame rates and visual variability. To tackle the visual challenges, we train a special-purpose signing hand detector using a small subset of our data. Given the hand detector output, a sequence model decodes the hypothesized fingerspelled letter sequence. For the sequence model, we explore attention-based recurrent encoder-decoders and connectionist temporal classification-based approaches. As the first attempt at fingerspelling recognition in the wild, this work is intended to serve as a baseline for future work on sign language recognition in realistic conditions. We find that, as expected, letter error rates are much higher than in previous work on more controlled data, and we analyze the sources of error and effects of model variants.