Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #1
Session:Corpora and Evaluation Methodologies
Session Time:Wednesday, December 19, 13:30 - 15:30
Presentation Time:Wednesday, December 19, 13:30 - 15:30
Presentation: Poster
Topic: Spoken language corpora:
Paper Title: DISCOURSE MODELING OF NON-NATIVE SPONTANEOUS SPEECH USING THE RHETORICAL STRUCTURE THEORY FRAMEWORK
Authors: Xinhao Wang; Educational Testing Service 
 Binod Gyawali; Educational Testing Service 
 James V. Bruno; Educational Testing Service 
 Hillary R. Molloy; Educational Testing Service 
 Keelan Evanini; Educational Testing Service 
 Klaus Zechner; Educational Testing Service 
Abstract: This study aims to model the discourse structure of spontaneous spoken responses within the context of an assessment of English speaking proficiency for non-native speakers. Rhetorical Structure Theory (RST) has been commonly used in the analysis of discourse organization of written texts; however, limited research has been conducted to date on RST annotation and parsing of spoken language, in particular, non-native spontaneous speech. Due to the fact that the measurement of discourse coherence is typically a key metric in human scoring rubrics for assessments of spoken language, we initiated a research effort to first obtain RST annotations on non-native spoken responses from a standardized assessment of academic English proficiency. Afterwards, based on the annotations obtained, automatic parsers were built to process non-native spontaneous speech. Finally, a set of effective features were extracted from both manually annotated and automatically generated RST trees to evaluate the discourse structure of non-native spontaneous speech, and then employed to further improve the validity of an automated speech scoring system.