Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #1
Session:ASR III (End-to-End)
Session Time:Friday, December 21, 10:00 - 12:00
Presentation Time:Friday, December 21, 10:00 - 12:00
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: IMPROVING ATTENTION-BASED END-TO-END ASR SYSTEMS WITH SEQUENCE-BASED LOSS FUNCTIONS
Authors: Jia Cui; Tencent AI Lab 
 Chao Weng; Tencent AI Lab 
 Guangsen Wang; Tencent AI Lab 
 Jun Wang; Tencent AI Lab 
 Peidong Wang; The Ohio State University 
 Chengzhu Yu; Tencent AI Lab 
 Dan Su; Tencent AI Lab 
 Dong Yu; Tencent AI Lab 
Abstract: Acoustic model and language model (LM) have been two major components in conventional speech recognition systems. They are normally trained independently, but recently there has been a trend to optimize both components simultaneously in a unified end-to-end (E2E) framework. However, the performance gap between the E2E systems and the traditional hybrid systems suggests that some knowledge has not yet been fully utilized in the new framework. An observation is that the current attention-based E2E systems could produce better recognition results when decoded with LMs which are independently trained with the same resource. In this paper, we focus on how to improve attention-based E2E systems without increasing model complexity or resorting to extra data. A novel training strategy is proposed for multi-task training with the connectionist temporal classification (CTC) loss. The sequence-based minimum Bayes risk (MBR) loss is also investigated. Our experiments on SWB 300hrs showed that both loss functions could significantly improve the baseline model performance. The additional gain from joint-LM decoding remains the same for CTC trained model but is only marginal for MBR trained model. This implies that while CTC loss function is able to capture more acoustic knowledge, MBR loss function exploits more lexicon dependency.