Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #6
Session:ASR I
Session Time:Wednesday, December 19, 10:00 - 12:00
Presentation Time:Wednesday, December 19, 10:00 - 12:00
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: DYNAMIC EXTENSION OF ASR LEXICON USING WIKIPEDIA DATA
Authors: Badr Abdullah; LORIA/INRIA 
 Irina Illina; LORIA/INRIA 
 Dominique Fohr; LORIA/INRIA 
Abstract: Despite recent progress in developing Large Vocabulary Continuous Speech Recognition Systems (LVCSR), these systems suffer from Out-Of-Vocabulary words (OOV). In many cases, the OOV words are Proper Nouns (PNs). The correct recognition of PNs is essential for broadcast news, audio indexing, etc. In this article, we address the problem of OOV PN retrieval in the framework of broadcast news LVCSR. We focused on dynamic (document dependent) extension of LVCSR lexicon. To retrieve relevant OOV PNs, we propose to use a very large multi-topic text corpus: Wikipedia. This corpus contains a huge number of PNs. These PNs are grouped in semantically similar classes using word embedding. We use a two-step approach: first, we select OOV pertinent classes with a multi-class Deep Neural Network (DNN). Secondly, we rank the OOVs of the selected classes. The experiments on French broadcast news show that the Bi-GRU model outperforms other studied models. Speech recognition experiments demonstrate the effectiveness of the proposed methodology.