Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #9
Session:ASR III (End-to-End)
Session Time:Friday, December 21, 10:00 - 12:00
Presentation Time:Friday, December 21, 10:00 - 12:00
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: IMPROVED KNOWLEDGE DISTILLATION FROM BI-DIRECTIONAL TO UNI-DIRECTIONAL LSTM CTC FOR END-TO-END SPEECH RECOGNITION
Authors: Gakuto Kurata; IBM Research 
 Kartik Audhkhasi; IBM Research 
Abstract: End-to-end automatic speech recognition (ASR) promises to simplify model training and deployment. Most end-to-end ASR systems utilize a bi-directional Long Short-Term Memory (BiLSTM) acoustic model due to its ability to capture acoustic context from the entire utterance. However, BiLSTM models have a high latency and cannot be used in streaming applications. Leveraging knowledge distillation to train a low-latency end-to-end uni-directional LSTM (UniLSTM) model from a BiLSTM model can be an option. However, it makes the strict assumption of shared frame-wise time alignments between the two models. We propose an improved knowledge distillation algorithm that relaxes this assumption and improves the accuracy of the UniLSTM model. We confirmed the advantage of the proposed method on a standard English conversational telephone speech recognition task.