Login Paper Search My Schedule Paper Index Help

My SLT 2018 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Presentation #5
Session:Deep Learning for Speech Synthesis
Session Time:Tuesday, December 18, 14:00 - 17:00
Presentation Time:Tuesday, December 18, 14:00 - 17:00
Presentation: Invited talk, Discussion, Oral presentation, Poster session
Topic: Speech recognition and synthesis:
Paper Title: PARAMETER GENERATION ALGORITHMS FOR TEXT-TO-SPEECH SYNTHESIS WITH RECURRENT NEURAL NETWORKS
Authors: Viacheslav Klimkov; Amazon 
 Alexis Moinet; Amazon 
 Adam Nadolski; Amazon 
 Thomas Drugman; Amazon 
Abstract: Recurrent Neural Networks (RNN) have recently proved to be effective in acoustic modeling for TTS. Various techniques such as the Maximum Likelihood Parameter Generation (MLPG) algorithm have been naturally inherited from the HMM-based speech synthesis framework. This paper investigates in which situations parameter generation and variance restoration approaches help for RNN-based TTS. We explore how their performance is affected by various factors such as the choice of the loss function, the application of regularization methods and the amount of training data. We propose an efficient way to calculate MLPG using a convolutional kernel. Our results show that the use of the L1 loss with proper regularization outperforms any system built with the conventional L2 loss and does not require to apply MLPG (which is necessary otherwise). We did not observe perceptual improvements when embedding MLPG into the acoustic model. Finally, we show that variance restoration approaches are important for cepstral features but only yield minor perceptual gains for the prediction of F0.