Technical Program

Paper Detail

Presentation #19
Session:ASR IV
Location:Kallirhoe Hall
Session Time:Friday, December 21, 13:30 - 15:30
Presentation Time:Friday, December 21, 13:30 - 15:30
Presentation: Poster
Topic: Speech recognition and synthesis:
Paper Title: RAPID SPEAKER ADAPTATION OF NEURAL NETWORK BASED FILTERBANK LAYER FOR AUTOMATIC SPEECH RECOGNITION
Authors: Hiroshi Seki, Toyohashi University of Technology, Japan; Kazumasa Yamamoto, Chubu University, Japan; Tomoyosi Akiba, Toyohashi University of Technology, Japan; Seiichi Nakagawa, Chubu University, Japan
Abstract: Deep neural networks (DNN) have achieved significant success in the field of automatic speech recognition. Previously, we proposed a filterbank-incorporated DNN which takes power spectra as input features. This method has a function of VTLN (Vocal tract length normalization) and fMLLR (feature-space maximum likelihood linear regression). The filterbank layer can be implemented by using a small number of parameters and is optimized under a framework of backpropagation. Therefore, it is advantageous in adaptation under limited available data. In this paper, speaker adaptation is applied to the filterbank-incorporated DNN. By applying speaker adaptation using 15 utterances, the adapted model gave a 7.4% relative improvement in WER over the baseline DNN at a significance level of 0.005 on CSJ task. Adaptation of filterbank layer also showed better performance than the other adaptation methods; singular value decomposition (SVD) based adaptation and learning hidden unit contributions (LHUC).