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Why is genomics interesting for the
signal processing person?

Because there are sequences there!

OK, what sort of sequences?

1. Sequences from an alphabet of size four:

ATTCGAAGATTTCAAC GGGAAAD%A.

2. Sequences from an alphabet of size twenty:
AACWYDEFGHIKLMNPQRSTVAPPQR
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Size-4 alphabet:
A, C, T, G: bases (also called or nucleotides)

DNA sequences (genomes) are made of these.

Genes are parts of DNA, and are 4-letter
sequences.

Adenine Thymine Cytosine  Guanine
or Uracil (in RNA)

DNA: deoxyribonucleic acid
RNA :ribonucleic acid P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover
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Alberts, et. al.,Essential Cell Biology,Garland publishing, Inc.,1998 to get started, and
a great reference
Alberts, Bray, Johnson, Lewis, Raff, Roberts, and Walter



A good introductory article (signal processing aspects)
Dimitris Anastassiou, IEEE Signal Processing Magazine, July 2001

Genomic Signal
Processing




Size-20 alphabet:

ACDEFGHIKLMNPQRSTVWY: amino acids
(B,J,0,U,X,Z missing)

Proteins are sequences made of these letters.

20-letter proteins and 4-letter DNA are common to all life
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The twenty natural amino acids
(B,J,0,U,X,Z missing)

11 essential amino acids.

Animals cannot make the eleven
indicated amino acids.

They need to eat them,

Milk provides all of these.

Grains and beans together
provide all of these.

P. P. Vaidyanathan, ISCAS Plenary,
5/24/2004,Vancover
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Ala
Cys
Asp
Glu
Phe
Gly
His
Ile
Lys
Leu
Met
Asn
Pro
Gln
Arg
Ser
Thr
Val

Alanine
Cysteine (has S5)
Aspartic acid
Glutamic acid
Phenylalanine
Glycine
Histidine?
Isoleucine®
Lysine?
Leucine®
Methionine® (has S)
Asparagine

Proline

Glutamine
Arginine’
Serine
Threonine
Valine”
Tryptophan'"
Tyrosine!!
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Protein Example
Fibroblast growth factor proteins

Basic bovine

PALPEDGGSGAFPPGHFKDPKRLYCKNGGF
FLRIHPDGRVDGVREKSDPHIKLOLOAEER
GVVSTKGVCANRYLAMKEDGRLLAskcvTp l€ngth 146
ECFFFERLESNNYNTYRSRKYSSWYVALKR
TGOYKLGPKTGPGOKAILFLPMSAKS

Acidic bovine
FNLPLGNYKKPKLLYCSNGGYFLRILPDGT
VDGTKDRSDQHIQLOLCAESIGEVYIKSTE
TGQFLAMDTDGLLYGSQTPNEECLFLERLE length 140
ENHYNTYISKKHAEKHWFVGLKKNGRSKLG
PRTHFGQKAILFLPLPVSSD

Will return to these and talk about their Fourier transforms
P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Outline

e Molecular biology background

e Computational gene-finding

e Spectral analysis (Fourier, wavelet, correlations)
e Hidden Markov Models and sequence analysis

* New world of non-coding genes

e References

Will try to cover the cream of it.
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DNA schematic sugar-phosphate backbone
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Bacterial DNA: few million bases; Human DNA: three billion bases

If we write the bases as letter-sized objects:

e Bacterial DNA takes up the space of about 50 average novels.
e Human DNA takes about 2000 novels.

Actual physical size:

 human DNA in any cell stretches out to 2 yards.

e DNA in all 5 trillion cells in humans:

Covers it 50

AGATCAGG .. .
limes over

ACTTAAGGCCAA

earth

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



What do genes do?

sugar-phosphate backbone

top strand s - 3

31‘_

bottom strand

Intergenic spaces, contain

‘/gei\ / AT,C,G too!
DNA
sequencel LT Tan 4d I
Top strand,
let’s say

protein 1 protein 2 protein 3

Lots of protein in the cell, inside and outside nucleus
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All cells in a given organism have the same DNA; same set of genes.
But different genes are expressed(i.e., functional) in different cells.

That’s why brain cells look different from blood cells, and so forth.

Brain cell
http://www-biology.ucsd.edu/news/article_112901.html

2% Red blood cells

o http://www.cellsalive.com/gallery.htm

When a gene is expressed, it gives instructions to the cell to make
a particular protein.

Each gene makes a different protein.



Example of a Protein: Hemoglobin (oxy, human)

http://www.biochem.szote.u-szeged.hu/astrojan/protein2.htm

Sequence of amino acids. Folds into beautiful 3D shapes. Necessary for function.



Example of a protein (an enzyme)

Glutamine Synthetase

1\ "
: Y f_
’?‘ LU l

Ty
==Y
N ’;‘ H\S
Center of F -
aqueous cavity # }
'

"\, |

. ' - L. -

EI Passive sile \\
I:"E Kesidues in the active sitbe

http://www.biochem.szote.u-szeged.hu/astrojan/protein2.htm




some other molecule,
e.g., ligand

Fits like a puzzle piece.
That’s how beautifully
enzymes work!

protein molecule

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Generation of a protein from a gene

sugar-phosphate backbone

m-w

7] [a] [a] [s| [ [a] [ [c] [~

gences

/ +\ intergenic spaces
/

DNA
“ Top strand;

sequence
millions of bases
T replaced with U A,C,T,G

AC, U G :F . B I B Gene copied

seguence
1 into mRNA

exons lntrons o
(transcription)

A,C,UG . . .
BEICER reduced mRNA (introns removed by splicing)

sequence
P. P. Vaidyanathan, Converted to protein by tRNA and ribosome
ISCAS Plenary, .
(translation from 4- language to 20-language)

5/24/2004,Vancover



Generation of a protein from a gene

cell
ds-DNA double strand opened up, one
strand copied as an RNA

introns removed and
mRNA reduced by
splicing

ribosome converts mRNA
into protein

nucleus

In this process the ribosome
works with a molecule called
tRNA which transfers groups of
3 bases (codons) in the mRNA
into amino acids that make up
the protein

ribosome

" protein
The protein folds beautifully into its 3D
structure which depends only on the amino

acid sequence (and pH of medium). Now it is

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover ready to function.




Central dogma of molecular biology (Crick)

transcript

DNA » mRNA e protein

Pioneers: Beadle and Tatum, Bread mold experiment (1942)

In recent years the central dogma has been challenged!

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Role of codons

Gene from DNA scanned from 5’ to 3’ end:
5 ATGGAAGTGGCAATGATCCTGAATTTAACGTACTAG 3

The gene is interpreted in groups of three bases called codons.

5’ end 3’ end

ATGGAAGTGGCAATGATCCTGAATTTAACGTACTAG <«— gene
E V A M | L N L T Y« Protein

ATG: start codon; also codon for M (met); plays two roles

TAA, TAG, TGA : stop codons (do not code for amino acids).

Typically genes are long (1000s of bases); proteins have 100s to 1000s of amin acids

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



codon

v

AAA :
AAG:
AAT :
AAC:

AGA:
AGG:
AGT:
AGC:

ATA:

ATG:
(Met)
ATT:

ATC:

ACA:
ACG:
ACT:
ACC:

232NN

HH~< H nnaxdx

HH e

amino acid

v

START

(Ile)
(Ile)

The genetic code

GAA :
GAG:
GAT :
GAC:

GGA:
GGG:
GGT:
GGC:

GTA:
GTG:

GTT:
GTC:

GCA:
GCG:
GCT:
GCC:

<< << @ 6 e Q 'wilw ey les)
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(Ala)
(Ala)
(Ala)
(Ala)

TAA :
TAG:
TAT :
TAC:

TGA::
TGG:
TGT:
TGC:

TTA:
TTG:

TTT:
TTC:

TCA:
TCG:
TCT:
TCC:

STOP

STOP

Y (Tyr)
Y (Tyr)
STOP

W (Trp)
C (Cys)
C (Cys)
L (Leu)
L. (Leu
F (Phe
F' (Phe
S (Ser)
S (Ser)
S (Ser)
S (Ser)

CAA:
CAG:
CAT:
CAC:

CGA:
CGG:
CGT:
CGC:

CTA:
CTG:

CTT:
CTC:

CCA:
CCG:
CCT:
CCC:
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Mutations in genes can cause disease

Gene HBB creates the protein beta globin in hemoglobin of red blood cells.
This gene is 1600 bases long, and the spliced mRNA 626 bases long.

A single error in this sequence is responsible for sickle cell anemia.

HBB Sequence in Normal Adult Hemoglobin (Hb A):

Nucleotide CTG ACT CCT GAG GAG AAG TCT

Amino Acid Leu Thr Pro | Glu |Glu Lys Ser
I | I
3 6 9

HEB Sequence in Mutant Aqult Hemoglobin (Hb S):

Nucleotide CTG ACT CCT|GTG |GAG AAG TCT

Amino Acid Leu Thr Pro] Val |Glu Lys Ser
I | |
3 6 9

http://www.ornl.gov/sci/techresources/Human_Genome/posters/chromosome/hbb.shtml



cell DNA replicates itself when
the cell divides.

AATATAGACCGACCCTAAGTAAAATAGACCTAGTAGA

nucleus

1 error per billion bases.

P, =10""

Built-in proof reading system called mismatch-pair system

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Parcel service, first class mail: 13 late deliveries out of 100 parcels

Airline luggage: 1 lost bag per 200

Professional typist: 1 mistake 1in 250 characters
Driving in the US: 1 death per 10,000 people per year
DNA replication: 1 error per billion bases copied
Speaker giving a talk: 1 erorr per slide

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Beginning of the history of molecular biology:

J. D. Watson, and F. H. C. Crick, A structure for DNA, Nature, 4/1953

http://www.pbs.org/wgbh/nova/photo51/before.html

End of this part



Outline

e Molecular biology background

e Computational gene-finding

* Spectral analysis (Fourier, wavelet, correlations)
e Hidden Markov Models and sequence analysis
* New world of non-coding genes

e References
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Indicator sequences

DNA  AACTGGCATCCGGGAATAAGGTC

x,(n) 11000001000000110110000
\

Indicator sequence for base A
Similarly define X ()  X.(n) Xx(n)

X,(n) + X (n) +X.(n) +x(n) =1

Fourier transforms:
XA€) XrEe) X))  XgE™)

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Fourier transforms:

X, (€) X1e”) X))  Xge™)

Define S(ejw ) to be the sum-of-magnitude squares.

In protein coding regions
this exhibits a peak at 27 /3.
Period-3 property. |
Sy |
Even the plot of one base, €.g., _ |
X @ reveals this! WWMNMMWWWMM o
0 2m/3 T

Coding region of length N=1320 inside a genome of baker’s yeast (S. cerevisiae).

Tiwari, et. al., CABIOS, 1997.
Dimitris Anastassiou, IEEE Signal Processing Magazine, July 2001



Period-3 property arises from the special bias built into the genetic code. Some
bases dominate at certain positions, €.g., base G i1s dominant at positions 1 and 2.

1 A Ala Alanine GCA,GCC,GCG,GCT

2 C Cys Cysteine (has 9) TGC, TGT

3 D Asp Aspartic acid GAC,GAT

4 E Glu Glutamic acid GAA.GAG

5 F  Phe Phenylalanine! TTC,TTT

6 G Gly Glycine GGA,GGC,GGG,GGET

7 H His Histidine? CAC,CAT

8 I e Isoleucine® ATAATC,ATT

9 K Lys Lysine! AAAAAG

10 L Leu Leucine® TTATTG,CTA,CTC,CTG,CTT
11 M Met Methionine® (has S) ATG

12 N Asn Asparagine AACAAT

13 P Pro Proline CCA, CCC, ccG,ceT

14 @ Gln Glutamine CAA.CAG

15 R Arg Arginine’ AGAAGG,CGA,CGC,CGG,CGT
16 S  Ser  Serine AGCAGT, TCA, TCC, TCG, TCT
17 T  Thr Threonine® ACAACCACG,ACT

18 V. Val Valine® GTA,GTC,GTG,GTT

19 W Trp Tryptophan'® TGG

20 Y Tyr Tyrosine'! TAC, TAT

The mapping from amino acids to codons is many-to-one

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover




genes intergenic spaces

ceouence N TN~ Top strand;
seduence

millions of bases
/ \ A,C,T,G

ACTG
sequence

exons introns

Sho t-tille Fourier transform

\4 vy X
© —_— = = = 2n/3
0

Base location

So we can locate exons using STFT
How to choose window size? Usual time-frequency resolution tradeoff

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Filtering interpretation

Take any base, say G:
Xs(n) 1100000100000011011000001101100110110
N
| W(n) Sliding window
———>
R
> >
Frequency response magnitude
corresponds
to 13 dB
Xg(n) Ya(n)
— > - » & I I (.D-.
2mnf 3 2

filter with impulse
response h(n)

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Spectrum at 27t/3 as a function of base location
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relative base location n

Gene F56F11.4 in the C-elegans chromosome 111

Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.



Return to the filtering interpretation

base
Xg(n) A() Mti on n

111110010101011 / >
coding region

Hie™)]

D
-

o3

How about designing filters to improve time-frequency resolution?

Interesting DSP problem!

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Notch Antinotch

1 1
308 o 0.8
2 5
o 3
2 0.6 p
2 - =06 R=0.9
S — R=0199 5 — R=099
2 3
oy =
04 50.4
= =
0.2 05
0 !
0 0.2 0.4 0.6 0.8 1 0

win . 0

B R? —2Rcosfz 1 + 2
1 —2Rcosfhz—1 + R2,-2

Allpass: A(z)

G(2) L1 1 1

Define two filters: —

H(z) 211 —1][A(2)

Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.
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dB
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.
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Multistage filter design method
like the IFIR method (Neuvo, et. al, 1983)
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Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.



STFT calculation Allpass based antinotch
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Hidden Markov models have been very successful
in computational gene finding.

Will return to it later.



Outline

e Molecular biology background

e Computational gene-finding

e Spectral analysis (Fourier, wavelet, correlations)
e Hidden Markov Models and sequence analysis
* New world of non-coding genes

e References
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Proteins are sequences made of 20 kinds of amino acids:
ACDEFGHIKLMNPQRSTVWY
Each amino acid is associated with a unique number called the EITP:

Electron-ion interaction potential
015

oA
[ ]

EllP value
-

0.05

: s ??? N {
1. Cosic, IEEE Trans. Y 2 2 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20
Biomed. Engr., Dec. 1994 amino acid



015

0.1
I I

ElIlP value
-

0.05

!TTT[{
3 4 5 868 ¥ B8

Given an amino acid sequence: AACDEQRIKLYXTSVDC .......

0—a—e

1 2 9 10 11 12 13 14 15 16 ¥ 18 19 20

amino acid

We can readily turn it into a numerical sequence x(n).

The Fourier transform of x(n) has interesting properties
P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Proteins belonging to the same functional group have
something common in their Fourier transform!

Example: Fibroblast growth factor proteins

Basic bovine

PALPEDGGSGAFPPGHFKDPKRLYCKNGGF
FLRIHPDGRVDGVREKSDPHIKLQLQAEER
GVVSIKGVCANRYLAMKEDGRLLASKCVTD length 146
ECFFFERLESNNYNTYRSRKYSSWYVALKR
TGQYKLGPKTGPGQKAILFLPMSAKS

Acidic bovine

FNLPLGNYKKPKLLYCSNGGYFLRILEDGT
VDGTKDRSDQHIQLQLCAESIGEVYIKSTE
TGQFLAMDTDGLLYGSQTPNEECLFLERLE length 140
ENHYNTY I SKKHAEKHWFVGLKKNGRSKLG
PRTHFGQKAILFLPLPVSSD



Mag. Square (basic bovine)
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Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.
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Mag. Square (acidic boving)
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Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.
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Let x(n) and y(n) be proteins which have a function in common.
Then the product of Fourier transforms exhibits a sharp isolated peak!

o < o
-~ ()] o)

Mag. Square (product)

o
n

O L‘—f II'L.— M/\_..f- / III’\\_/\[ \J 'II llll'v
0.2

0 0.1 0.3 0.4 0.5
wl2x

Proteins work by recognizing other molecules from spatial periodic components!

Resonant recognition model (RRM), Cosic, 1994.

Lots of good physics behind this. See references in Cosic, 1994.



some other molecule,
e.g., ligand

Fits like a puzzle piece.
That’s how beautifully
enzymes work!

protein molecule

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Protein group: hemoglobins

Magnitude of FT Prod. ——

Illli i M 1 .".hu. | ,h

0.0239 0.1 0.2 frequency 0.4 0.5

Adapted from Cosic, IEEE Trans. Biomed Engr., 1994.

Hemoglobins are oxygen carriers in the red blood cells.



Protein group: glucagons

A
-t

Magnitude of FT Prod.—

i l +..L| :._ I

0.1 0.2 0.3203 04 0.5

frequency —» T

S
=

this is like
Adapted from Cosic, IEEE Trans. Biomed Engr., 1994.

Glucagons are proteins (peptide hormones) which affect glucose level in blood.
Made by alpha-cells in pancreas.



PROTEIN SEQUENCTS Frequency normalized so that
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By localizing the spatial domain region which has the greatest influence at the
resonance frequency, one can identify the small region in a large protein
molecule which is responsible for a particular function.

Hot spots of the protein

e Usual tradeoff between frequency localization and time localization.
 Wavelet transform: natural candidate for this.

Piragova, et al., Proc. of the IEEE, Dec. 2002.



Long-range correlation in DNA sequences

DNA AACTGGCATCCGGGAATAAGGTC

X(M) 11000001000000110110000

Lot of correlation

5 Decays very slowly!  between bases
= millions away

L

r(k) 2 /

S

=

» k
0

Long-range correlation or 1/f property
P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



1

Fourier transform pair: —— & ¢ ‘t‘@_l called 1/f property
‘f“:‘f for any a > 0.

1/f behavior is equivalent to long range correlation in time.

A

Power spectrum Autocorrelation
f x ¢

> >

A

Examples:

¢ o =1 for traditional 1/f noise.

¢ o =2 for Brownian noise.

white]| . Brownian
5l integrator|

Pap oulis, Systems and transf orms, 1968 P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



History of 1/f behavior in DNA

Peng, et al., Nature, March 92 (studied genes with introns).
Voss, Physical review letters, June 92 (studied human DNA, other organisms).

de Sousa Vieira, Physical review E, Nov. 99 (studied many organisms).

Li, Physical review A, May 1991 (duplicate-mutate theory).

Hausdroff and Peng, Physical review E, Aug. 96 (multiscale randomness).

Early work on theory:
Wornell, IEEE Trans. IT, July 1990: 1/f noise modeled using with wavelets.

1/f behavior is well known in the physical world: Noise in resistors, sunspot activity, flood levels,

audio spectra, all exhibit 1/f feature.
P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Example: Bacteria aquifex aeolicus, size 1.55 Mb.

flattens out

o ——
e
o "““r'“x.r'-;m
\ﬁ line at
\1 w=27/3
= LJ '.j . 1/f part » (period-3 component)
510 "M
] | IJ|
i) p h‘ '
: |
3 W”\
L
(ol This is a typical
' DNA power spectrum
e W
PSD for base A; 1 million bases used Vaidyanathan and Yoon, J. of the
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PSD of base A in randomly generated “DNA”.
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Why is there long range correlation in DNA?

If all life evolved from a common ancestor, then today’s long
DNA must have evolved from short DNAs of early life.

DNA size evolution

e Earliest life: few 1000 bases (half a billion years ago)

e Today’s smallest bacteria : few million bases

e Mammals like us: few billion bases.

Evolution model: duplicate and mutate model.
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Mathematical challenge

Suppose we generate a long binary sequence x(n) as follows:

e Start from a short binary seed s(n). ]

* Duplicate and mutate randomly with g
small error probability p

e Concatenate the result to s(n). [ —

e Keep repeating this to get the long B oo -
sequence x(n).

Can you prove that x(n) has the 1/f property?

W. Li, Physical review A, American Physical Society, May 1991



End of this part
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Markov models

DNA sequence: AACTGAGGTACAATTCGATCTC

A C T
(01 02 04 03

02 05 01 0.2

0.5 02 01 0.2

Q = G »

§ 03 01 04 0.2)

/

State transition matrix 2,

L. R. Rabiner, Proc. IEEE, Feb. 1989. P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Application of Markov models

Given a DNA sequence: X = x(1) x(2) x(3) ...... x(N)
And given a Markov model X2, we can calculate:

Probability that sequence X is generated by model 2. :
P(X) = P(x(1)) x P( x(1) to x(2)) x P( x(2) to x(3)) x .....

Given a set of models: 21 20 XXX 2K
Model 1 Model 2 Model K
exons introns intergenic

we can find the model which most likely generated the sequence X.

The models are obtained by training with known sequences.
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Hidden Markov Models (HMM)

In an HMM, states are not the same thing as outputs.
Example: States: 1, 2, 3 Outputs: A,C, T, G

0.3 0.4

N Y Y

A: 0.3 A: 0.5 A: 0.1
C:0.1 C:0.3 C:0.3
T:04 T:0.1 T:04
G:0.2 G: 0.1 G:0.2
N N N
State 1 State 2 State 3

0.1

States could be exon, intron, CpG island, etc. Outputs could be bases.
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HMM example:

0.3 04
AT
2 A:0.3 A: 0.5 A: 0.1
C:0.1 C:0.3 C:0.3
6 T:0.4 T:0.1 T:0.4
0. G:0.2 G: 0.1 G:0.2
State 1 State 2 State 3
0.1 /A C T G\
1 2 3 1 03 01 04 0.2
1 (03 07 00) 2 105 03 0.1 0.1
2 100 04 0.6 3 0.1 03 04 0.2
3 &0'9 0.0 0'1/ Output matrix I1

State transition matrix X ,
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HMM was used in speech recognition in 80’s (Rabiner).

The bioinformatics community learnt the basic ideas from
Larry Rabiner’s famous IEEE tutorial (Proc. of the IEEE, 1989)

Today HMM is routinely used in genomics and proteomics:

e Gene 1dentification

* DNA sequence alignment (big area; lots of problems)
e [dentification of CpG islands in DNA

Salzberg, Searls, and Kasif, Computational methods in molecular biology, Elsevier, 1998.

Durbin, Eddy, Krogh, and Mitchison, Biological sequence analysis,Cambridge Univ. Press,
1998.
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HMM is a finite state machine (FSM) and represents
regular grammars.

Regular grammar
Only production-rules of the form: W — aW

W: nonterminal a: terminal

Example: suppose the grammar is defined by these rules:
W — AW W— TW W — CW

Example of a string generated by this grammar:
W— AW—->AAW—> AACW — AACTW — AACT

Theorem: HMM is equivalent to stochastic regular grammars

Stochastic means: each rule is used with a certain probability
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Regular grammar example:
W— AW-—>AAW— AACW — AACTW — AACT

Context free grammar (CFG):

Production rules of the form: W — o
W: nonterminal a: string of terminal and or nonterminals

Example: grammar with production rules:
W—AWA W—CWC W—TWT W—GWG W —null

Example of sequence generated:
W—-AWA —-ATWTA - ATCWCTA—ATCCTA

This is a symmetric sequence (palindrome)

Grammar which generates precisely the set of all palindromes cannot be regular; it has
to be a context free grammar.

Stochastic context free grammar (SCF'G): the rules are used stochastically.

The palindrome language cannot be generated by HMM. We need SCFG for that.



Chomsky’s hierarchy of grammars (1956)

unrestricted non-coding genes

these have
—~ SCFG ncRNAs palindrome
context sensitive siRNAs components

context free

regular

Introns

HMM €xons
CpG islands

intergenic

Noan Chomsky, 1928-- computational linguist, MIT
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DNA sequence

\\ -F

intergenic space

gences :
nearly 98% in
. higher mammals like us!
Recent dlSCOVGl’YZ Often called junk DNA

Intergenic space has lots and lots of genes! Not junk after all.

But these are different kinds of genes. They generate
RINA which do not code for proteins.

RNA-genes or noncoding genes.
Noncoding RNA (ncRNA)

The RNA remains in the cell and performs its own functions!

P. P. Vaidyanathan, ISCAS

W. W. Gibbs, The unseen genome, Scientific American, 11/03 Plenary, 5/24/2004,Vancover



Recall Crick’s Central dogma of molecular biology:

transcript

DNA » mRNA e protein
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RNA molecules acknowledged by central dogma

mRNA: messenger RNA
The gene 1s transcribed into mRNA which
carries the genetic code to ribosome

tRNA:transfer RNA
helps in translation of mRNA to protein

rRNA: ribosomal RNA
helps in translation of mRNA to protein

A few others like snoRNA, etc. These are the classic non-coding RNAs.

But now biologists have found many more ncRNAs.
Central dogma of molecular biology challenged!
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The heroic detective story

There was once a C. Elegans baby that would not grow up beyond
the first (of four) larval stage; kept repeating stage 1.
Getting bigger but not growing up.

John Travis, “Biological dark matter”, Science News, 1/02
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There was a defective gene responsible for this.

In the healthy worm the gene’s function was to release a
tiny RNA molecule (22 bases long) into the cell.

This RNA had its own function: regulate other protein coding
genes responsible for normal growth.

In the defective worm the gene was not generating this RNA properly.

This was the first nc-RNA to be taken seriously (other than the
classic ones).

Ambrose et al., 1993 (Dartmouth medical school, Hanover, N. H).
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Today nc-RNA genes are recognized to be extemely
crucial to the functioning of cells.

Heriditary information is carried by

1. Protein-coding genes (known for many years).
2. ncRNA genes.

3. Epigenetic layers

Sc ientific American, December 2003 P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



What is there in it for the signal processor?

We know protein coding genes can be identified on the computer.

ncRNA genes are much more difficult to identify on the computer.

Still an open problem in computational molecular biology!
But why is it so challenging?

 ncRNA could be very small (e.g., 22 bases)

* There 1s no codon bias (period 3) or open reading frame (ORF)
e No start and stop codons
e Cannot go by size. Protein coding genes with 7 bases are known!

e Other reason: we have to examine secondary structure (see later).
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Computational identification of ncRNA genes

A new discipline called comparative genome analysis helps to distinguish coding
genes from nc-genes.

Does not work perfectly yet

Example 1
360-base bacterial regulatory ncRNA CsrB gene: (first thought to be protein coding gene)

Example 2

The plant (Medicago) ENOD40 gene was thought to be an ncRNA gene based on sequence
analysis. Recently based on comparative genome analysis, found to encode two tiny proteins
(13 and 27 amino acids long).

S. R. Eddy, Nature reviews, GENETICS, 12/01
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Comparative genomics

If two or more species have a common stretch of DNA then it 1s
probably doing something important. Otherwise nature would
not have conserved it for millions of years.

To compare genomes, one has to solve the alignment problem.
XXAATAGCGAxxxxxxxxXXXAATACxxxAAATACCG
XXXXXXAATAGCGAxxxxxAATACxxxxxAAATACCG
XXXXXXAAGAGCGAXXxxxAATACxxxxxAAAGTCCG
XXXXXXAAAGCGAXxxxxAATACxxxxxAAATAAACCG

Multiple-alignment problem with gaps and mutations

Scoring problem

Hidden Markov models, again useful.  Lots of good problems for theoreticians!
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The human genome has been compared with

Cows
Dogs

Pigs

Rats

7 others ...

And there were 1,200 common segments, 154 in intergenic area.

Study by NHGRI (National Human Genome research institute)
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Examples

 Many nc-RNA genes have been found in flies, worms, humans.

e E. Coli bacterium has 4200 protein coding genes.
and several hundered nc-RNA genes.

e About 50% of genes in mice could be nc-RNA genes.

 C. Elegans probably has over 200 micro-RNA genes (20%).

Intergenic space = biological dark matter?
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Number of protein-coding genes does not scale well
with organism’s complexity
* Worms have only twice as many protein-coding genes as bacteria

e Humans: probably only twice as much (about 27,000)

 Rice plant: more genes than humans!

But apparently the number of ncRNA genes does!
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Functionality of ncRNAs depends mostly on their secondary structure.

U Y c Notice the secondary structure created by base pairing in
C U blue shaded areas
G U
U G
G C
A U
U A U
v u
A ¢ UA
o el dsrA RNA in E. Coli
A U
oo PUA
bg U A
AU UG
-l 2 U
Ao oo U C
end aac  aac @ U auccceacce ¢
U
UAGGGCUGGG C
U A
U
3’ end

See S. R. Eddy, Nature Reviews, 12/01
for many examples and detailed discussions

U
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tRNA molecule (clover-leaf form)

Amino acid L
5’ attachment site

.3"

Hydrogen bonds :
between paired bases [

S Anticodon /

http://www.ebi.ac.uk/microarray/biology_intro_files/tRNA.htm

Notice amazing amount of secondary structure



XXXAAT CxxxxXxXXXXXXXXXXXXXXXXXXGATTXXXXXXXXXXX
Linear sequence representing an ncRNA-gene

XXXAATCXXXXXXXXXXXXXXXKx

] X Folded sequence
X
XXXXXXXXXXX TTAGXXXXXXXXXXXXXXXX

Compuational biologists try to identify ncRNA genes by looking
for the palindrome patterns buried in the linear sequence.

HMMs cannot represent palindromes!

We need context-free grammars, and the search is more difficult.
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[/// \\\\

TTGTTCGAAGAACG
TTCTTAGAATAAGG

These two sequences will probably fold into the same secondary
structure or shape. And that 1s what really matters as far as

biochemical function 1s concerned.

Finding a particular ncRNA gene does not necessarily mean looking
for a particular sequence. We really are looking for hidden
palindromes at appropriate places.

A:T
C
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Routine steps in the application of HMM

Given the HMM and an output sequence y(1),y(2), ....
how to compute the state sequence which most likely generated it?

Viterbi’s algorithm (same as the one in digital communications)

Given the HMM and an output sequence y(1),y(2), ....
how to compute the probability that the HMM generates this?
Forward-backward algorithm

How to adjust the model parameters 2 and I such that they are

optimal for an application, e.g., to represent exons?
Training; Expectation Maximization algorithm (Baum-Welch).
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XXXAATCXXXXXXXXXXXXXXXKx

] § Folded RNA sequence
XXXXXXXXXXX TTAGXXXXXXXXXXXXXXXX

HMMs cannot represent palindromes!

We need context-free grammars

How to systematically develop algorithms based on such grammars?

For example

* Is there a Viterbi-like algorithm?

* [s there a forward-backward algorithm?

 [s there a Expectation-Maximization-like algorithm?

Need FAST algorithms because genomes are looong!

Ongoing research topic in computational molecular biology today.
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Biology today is not just wet stuff in smelly labs!

Molecular biology involves signal processing, computer

science, mathematics, informatics, all coming together
wonderfully!

End of this part
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REFERENCES FOR THE GENOMIC SIGNAL PROCESSING TALK

Plenary lecture by Prof. P. P. Vaidyanathan, Caltech, Pasadena, CA

“Genomic signal processing”, ISCAS-2004 Vancouver, Canada, May 200/

http:/ /www.systems.caltech.edu /dsp/lscasGenomeTalkRef/

[ have tried to categorize the papers into subtopics but this has been diffeult. Manyv papers can easily belong
in more than one category. So please do not overlook anv of these. The selection here 1s by no means
extensive. It 1s based entirelv on myv personal taste. Perhaps a good list to start with. to teach from, and so

forth — P.P. V.
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