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Why is genomics interesting for the 
signal processing person?

Because there are sequences there!

OK, what sort of sequences?

…ATTCGAAGATTTCAACGGGAAAA…
1. Sequences from an alphabet of size four:

2. Sequences from an alphabet of size twenty:
AACWYDEFGHIKLMNPQRSTVAPPQR

DNA

ProteinP. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Size-4 alphabet: 
A, C, T, G: bases       (also called or nucleotides)

DNA sequences (genomes) are made of these.

Genes are parts of DNA, and are 4-letter
sequences.

Adenine         Thymine          Cytosine      Guanine
                or Uracil (in RNA)

DNA: deoxyribonucleic acid
RNA:ribonucleic acid P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Hydrogen bond
Alberts, et. al.,Essential Cell Biology,Garland publishing, Inc.,1998

Complementary 
Strands in the
Double Helix

Alberts, Bray, Johnson, Lewis, Raff, Roberts, and Walter

to get started, and
a  great reference

Great place

DNA molecule
in the living cell
(usually in nucleus)

A        T
C        G



A good introductory article (signal processing aspects)
Dimitris Anastassiou, IEEE Signal Processing Magazine, July 2001



Size-20 alphabet:

(B,J,O,U,X,Z  missing)

Proteins are sequences made of these letters.

20-letter proteins and 4-letter DNA are common to all life

ACDEFGHIKLMNPQRSTVWY: amino acids
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The twenty natural amino acids
(B,J,O,U,X,Z  missing)

Grains and beans together 
provide all of these.

Milk provides all of these.

Animals cannot make the eleven
indicated amino acids.
They need to eat them;

11 essential amino acids.

P. P. Vaidyanathan, ISCAS Plenary, 
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Fibroblast growth factor proteins
Basic bovine

Acidic bovine

length 146

 length 140

Protein Example

Will return to these and talk about their Fourier transforms
P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Outline
• Molecular biology background

• Computational gene-finding

• Spectral analysis (Fourier, wavelet, correlations)

•! Hidden Markov Models and sequence analysis

• New world of non-coding genes

• References

Will try to cover the cream of it.
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DNA schematic
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Bacterial DNA: few million bases;    Human DNA: three billion bases

earth

sun
ACTTAAGGCCAAAGATCAGG ...

•   Bacterial DNA takes up the space of   about 50 average novels. 
•   Human DNA takes about 2000 novels.

If we write the bases as letter-sized objects:

•  human DNA in any cell stretches out to 2 yards.

•  DNA in all 5 trillion cells in humans:

Actual physical size:

Covers it 50
times over
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protein 1 protein 3protein 2

Lots of protein in the cell, inside and outside nucleus

What do genes do?

top strand

bottom strand

1 2 3

Top strand,
let’s say

Intergenic spaces; contain
A,T,C,G too!
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All cells in a given organism have the same DNA; same set of genes.

Red blood cells

When a gene is expressed, it gives instructions to the cell to make
a particular protein.

Each gene makes a different  protein.

That’s why brain cells look different from blood cells, and so forth.

But different genes are expressed(i.e., functional) in different cells. 

http://www.cellsalive.com/gallery.htm

Brain cell
http://www-biology.ucsd.edu/news/article_112901.html



Example of a Protein: Hemoglobin (oxy, human)

Sequence of amino acids. Folds into beautiful 3D shapes. Necessary for function.
http://www.biochem.szote.u-szeged.hu/astrojan/protein2.htm



Example of a protein (an enzyme)

http://www.biochem.szote.u-szeged.hu/astrojan/protein2.htm



protein molecule

some other molecule,
e.g., ligand

!Fits like a puzzle piece.
That’s how beautifully
enzymes work!
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1 2 3 4 5 reduced  mRNA (introns removed by splicing)
A,C,U,G
sequence

Converted to protein by tRNA and ribosome
(translation from 4- language to 20-language)

1 2 3 4 5A,C,U,G
sequence

Top strand;
millions of bases
A,C,T,G 

intergenic spaces

Gene copied
into mRNA
(transcription)

T replaced with U

Generation of a protein from a gene

P. P. Vaidyanathan, 
ISCAS Plenary, 
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cell

nucleus

ds-D!NA

mRNA

introns removed and
mRNA reduced by
splicing

double strand opened up, one
strand copied as an RNA

mRNA

Generation of a protein from a gene

In this process the ribosome 
works with a molecule called 
tRNA  which transfers groups of
3 bases  (codons) in the  mRNA
into amino acids  that make up 
the protein

tRNA

ribosome converts mRNA
into protein

protein

ribosome

The protein folds beautifully into its 3D
structure which depends only on the amino
acid sequence (and pH of medium). Now it is
ready to function.P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Central dogma of molecular biology (Crick)

Pioneers: Beadle and Tatum, Bread mold experiment (1942)

In recent years the central dogma has been challenged!

DNA                      mRNA                       proteintranscript translate
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ATG: start codon; also codon for M (met); plays two roles

TAA, TAG, TGA : stop codons (do not code for amino acids).

Typically genes are long (1000s of bases); proteins have 100s to 1000s of amin acids

The gene is interpreted in groups of three bases called codons.

A M I L N L T Y Protein
ATGGAAGTGGCAATGATCCTGAATTTAACGTACTAG
5’ end 3’ end

gene

Role of codons

5’  ATGGAAGTGGCAATGATCCTGAATTTAACGTACTAG   3’
Gene from DNA scanned from 5’ to 3’ end: 

E V
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The genetic code is common to ALL life! 

The genetic codecodon amino acid



Gene HBB creates the protein beta globin in hemoglobin of red blood cells. 
This gene is 1600 bases long, and the spliced mRNA 626 bases long. 

Mutations in genes can cause disease

A single error in this sequence is responsible for sickle cell anemia.

http://www.ornl.gov/sci/techresources/Human_Genome/posters/chromosome/hbb.shtml



cell

nucleus

ds-D!NA
DNA replicates itself when
the  cell divides.

1 error per  billion bases.

Built-in proof reading system called mismatch-pair system

AATATAGACCGACCCTAAGTAAAATAGACCTAGTAGA

P   = 10 e
-9
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Parcel service, first class mail:         13 late deliveries out of 100 parcels

Airline luggage:                                 1 lost bag per 200

Professional typist:                            1 mistake in 250 characters

Driving in the US:                             1 death per 10,000 people per year

DNA replication:                             1 error per billion bases copied

Speaker giving a talk:                       1 erorr per slide
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Beginning of the history of molecular biology:

J. D. Watson, and F. H. C. Crick, A structure for DNA, Nature, 4/1953

End of this part
http://www.pbs.org/wgbh/nova/photo51/before.html
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• Spectral analysis (Fourier, wavelet, correlations)

•! Hidden Markov Models and sequence analysis
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AACTGGCATCCGGGAATAAGGTC
1 1 0 00 0 0 10 0 00 0 0 1 10 1 1 0 0 00x (n)A

Indicator sequence for base A

x  (n)T x  (n)C x  (n)GSimilarly define

x  (n)T x  (n)C x  (n)Gx (n)A + ++ =1

DNA

Indicator sequences

X  (e   )jw
A X  (e   )jw

T X  (e   )jw
C X  (e   )jw

G

Fourier transforms:
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X  (e   )jw
A X  (e   )jw

T X  (e   )jw
C X  (e   )jw

G

Fourier transforms:

Coding region of length N=1320 inside a genome of baker’s yeast (S. cerevisiae).

In protein coding regions
this exhibits  a peak at 2p /3.
Period-3 property.

Define S(e    )  to be the sum-of-magnitude squares.jw

Even the plot of one base, e.g.,
X    reveals this!G w

0 p2p/3

S(e   )
jw

Tiwari, et. al., CABIOS, 1997.
Dimitris Anastassiou, IEEE Signal Processing Magazine, July 2001



Period-3 property arises from the special bias built into the genetic code. Some
bases dominate at certain positions, e.g., base G is dominant at positions 1 and 2.

The mapping from amino acids to codons is many-to-one

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



1 2 3 4 5A,C,T,G
sequence

Top strand;
millions of bases
A,C,T,G 

intergenic spaces

Base location

p

0

2p/3w

Short-time Fourier transform

How to choose window size? Usual time-frequency resolution tradeoff
So we can locate exons using STFT
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2p/N

Frequency response magnitude

x  (n)G y  (n)G

filter with impulse
response h(n)

1 1 0 00 0 0 10 0 00 0 0 1 10 1 1 0 0 00 0 1 10 1 1 0 0 1 10 1 1 0    x  (n)G
N

w(n) Sliding window

Filtering interpretation

Take any base, say G:
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Spectrum at 2p/3 as a function of base location

Gene F56F11.4 in the C-elegans chromosome III

Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.  



Return to the filtering interpretation

How about designing filters to improve time-frequency resolution?

Interesting DSP problem! 
P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



AntinotchNotch

Allpass:

Define two filters:

Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.  



H  (z   )
1

3

H  (z)
2

H  (z)
2

H  (z   )
1

3

Multistage filter design method
like the IFIR method (Neuvo,  et. al, 1983)

H  (z)
1

IIR elliptic, order 3

Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.



Allpass based antinotch

Multistage antinotch

STFT calculation

Sharper peaks

Low frequency
noise removedGene F56F11.4 

in the C-elegans
chromosome III Vaidyanathan and Yoon, J. of the

Franklin Inst., Elsevier Ltd., 2004.  



Hidden Markov models have been very successful
in computational gene finding. 

Will return to it later.
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Proteins are sequences made of 20 kinds of amino acids:
ACDEFGHIKLMNPQRSTVWY

Each amino acid is associated with a unique number called the EIIP:
Electron-ion interaction potential

I. Cosic, IEEE Trans.
Biomed. Engr., Dec. 1994



AACDEQRIKLYXTSVDC …….Given an amino acid sequence:       

We can readily turn it into a numerical sequence x(n). 
The Fourier transform of x(n) has interesting properties
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Example: Fibroblast growth factor proteins
Basic bovine

length 146

Acidic bovine

 length 140

Proteins belonging to the same functional group have
something common in their Fourier transform!



Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.  



Vaidyanathan and Yoon, J. of the Franklin Inst., Elsevier Ltd., 2004.  



Vaidyanathan and Yoon, J. of the
Franklin Inst., Elsevier Ltd., 2004.  



Let x(n) and y(n) be proteins which have a function in common.
Then the product of Fourier transforms exhibits a sharp isolated peak!

Proteins work by recognizing other molecules from spatial periodic components!

Lots of good physics behind this. See references in Cosic, 1994.

Resonant recognition model (RRM), Cosic, 1994.



protein molecule

some other molecule,
e.g., ligand

!Fits like a puzzle piece.
That’s how beautifully
enzymes work!

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Protein group: hemoglobins

0.50.0234 0.1 0.40.2 frequency

M
ag
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f  
FT
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d.

Hemoglobins are oxygen carriers in the red blood cells.

Adapted from Cosic,  IEEE Trans. Biomed Engr., 1994.



Protein group: glucagons

0.3203 0.50.0 0.1 0.40.2

this is like p

frequency

M
ag
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de
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f  
FT

 P
ro

d.

Glucagons are proteins (peptide hormones) which affect glucose level in blood.
Made by alpha-cells in pancreas.

Adapted from Cosic,  IEEE Trans. Biomed Engr., 1994.



Examples of other functional
groups of proteins.

Cosic,  IEEE Trans. Biomed Engr., 1994.

Frequency normalized so that
2p  corresponds to 1



By localizing the spatial domain region which has the greatest influence at the
resonance frequency, one can identify the small  region in  a large protein
molecule which is responsible for a particular function.

• Usual tradeoff between frequency  localization and time localization.

Piragova, et al., Proc. o!f the IEEE, Dec. 2002.

• Wavelet transform: natural candidate for this. 

Hot spots of the protein



DNA    AACTGGCATCCGGGAATAAGGTC

1 1 0 00 0 0 10 0 00 0 0 1 10 1 1 0 0 00x (n)
A

r (k)A

k

au
to

co
rre

la
tio

n

0

Decays very slowly!
Lot of correlation
between bases
millions away

Long-range correlation or 1/f property

Long-range correlation in DNA sequences
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Fourier transform pair:   

t

Autocorrelation

Papoulis, Systems and transforms, 1968

Power spectrum

f

1/f behavior is equivalent to long range correlation in time.

Examples:

w a =1 for traditional 1/f noise.

w a = 2 for Brownian noise.
integratorwhite Brownian

called 1/f property
for any a > 0.
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History of 1/f behavior in DNA

Peng, et  al., Nature, March 92  (studied genes with introns).

Voss, Physical review letters, June 92 (studied human DNA, other organisms).

de Sousa Vieira, Physical review E, Nov. 99 (studied many organisms).

Li, Physical review A, May 1991 (duplicate-mutate theory).

Hausdroff and Peng, Physical review E, Aug. 96 (multiscale randomness). 

Early work on theory:
Wornell, IEEE Trans. IT, July 1990: 1/f noise modeled using with wavelets.

1/f behavior is well known in the physical world: Noise in resistors, sunspot activity, flood levels,
audio spectra, all exhibit 1/f feature.
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w= 2p/3
line at

(period-3 component)

PSD for base A; 1 million bases used

Example: Bacteria aquifex aeolicus, size 1.55 Mb. 
flattens out

1/f part

This is a typical
DNA power spectrum

de Sousa Vieira,  1999
Vaidyanathan and Yoon, J. of the
Franklin Inst., Elsevier Ltd., 2004.  



PSD of base A in randomly generated “DNA”. 

No evidence of any 1/f behavior

Thickening due
to log-log axis

Vaidyanathan and Yoon, J. of the 
Franklin Inst., Elsevier Ltd., 2004.  



If all life evolved from a common ancestor, then today’s long
DNA must have evolved from short DNAs of early life.

Evolution model: duplicate and mutate model.

Why is there long range correlation in DNA?

• Earliest life: few 1000 bases (half a billion years ago)

• Today’s smallest bacteria : few million bases

• Mammals like us:  few billion bases. 

DNA size evolution
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Mathematical challenge

W. Li, Physical review A, American Physical Society, May 1991

Suppose we generate a long binary sequence x(n) as follows:

Can you prove that x(n) has the 1/f property?

• Start from a short binary seed s(n).

• Concatenate the result to s(n). 

• Duplicate and mutate randomly with 
   small error probability p 

...• Keep repeating this to get the long 
  sequence x(n).



End of this part
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G
0.3

T

0.4

A

0.1

C

0.2

DNA sequence:  AACTGAGGTACAATTCGATCTC

A       C       T       G
A

T

G

C

0.1       0.2       0.4       0.3

0.2       0.5       0.1       0.2

0.5       0.2       0.1       0.2

0.3       0.1       0.4       0.2

Markov models

SState transition matrix
L. R. Rabiner, Proc. IEEE, Feb. 1989. P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Application of Markov models

Probability that sequence X is generated by model S :
P(X) = P(x(1)) x P( x(1) to x(2)) x P( x(2) to x(3)) x …..

Given a DNA sequence: X =   x(1) x(2) x(3) ……  x(N)
And given a Markov model S, we can calculate:

Model 1 Model 2 Model K

S1 S2 SK….

we can find the model which most likely generated the sequence X.

Given a set of models:

exons introns intergenic

The models are obtained by training with known sequences.
P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Hidden Markov Models (HMM)

0.7

0.3

0.6

0.4

0.9

0.1

1 2

3

A: 0.1
C: 0.3
T: 0.4
G: 0.2

A: 0.3
C: 0.1
T: 0.4
G: 0.2

A: 0.5
C: 0.3
T: 0.1
G: 0.1

State 2State 1 State 3

In an HMM, states are not the same thing as outputs.
 Example!:  States: 1, 2, 3                Outputs: A, C, T, G

States could be exon, intron, CpG island, etc. Outputs could be bases.
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HMM example:

0.7

0.3

0.6

0.4

0.9

0.1

1 2

3

A: 0.1
C: 0.3
T: 0.4
G: 0.2

A: 0.3
C: 0.1
T: 0.4
G: 0.2

A: 0.5
C: 0.3
T: 0.1
G: 0.1

State 2State 1 State 3

State transition matrix S

        1       2      3
1     0.3    0.7   0.0
2     0.0    0.4   0.6
3     0.9    0.0   0.1 Output matrix P

        A      C     T       G
1     0.3    0.1   0.4    0.2  
2     0.5    0.3   0.1    0.1
3     0.1    0.3   0.4    0.2
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HMM was used in  speech recognition in 80’s (Rabiner).

The bioinformatics community learnt the basic ideas from
Larry Rabiner’s famous IEEE tutorial (Proc. of the IEEE, 1989)

Today HMM is routinely used in genomics and proteomics: 

• Gene identification
• DNA sequence alignment (big area; lots of problems)
• Identification of CpG islands in DNA

Salzberg, Searls, and Kasif, Computational methods in molecular biology, Elsevier, 1998.
Durbin, Eddy, Krogh, and Mitchison, Biological sequence analysis,Cambridge Univ. Press,
1998.
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HMM is a finite state machine (FSM) and represents
regular grammars.

Example of a string generated by this grammar:
W       AW     AAW     AACW      AACTW      AACT

Regular grammar
Only production-rules of the form: W        aW
W: nonterminal           a: terminal

W       AW W       TW W       CW
Example: suppose the grammar is defined by these rules:

Theorem: HMM is equivalent to stochastic regular grammars

Stochastic means: each rule is used with a certain probability
P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Regular grammar example:
W       AW     AAW     AACW      AACTW      AACT

Context free grammar (CFG):
Production rules of the form: W       a
W: nonterminal           a: string of terminal and or nonterminals

Example of sequence generated:
W    AWA     ATWTA      ATCWCTA     ATCCTA
This is a symmetric sequence (palindrome)

Grammar which generates precisely the set of all palindromes cannot be regular; it has
to be a context free grammar.

Stochastic context free grammar (SCFG): the rules are used stochastically.

W     AWA       W     CWC          W     TWT           W     GWG          W      null
Example: grammar with production rules:

The palindrome language cannot be generated by HMM. We need SCFG for that.



unrestricted

context sensitive

context free

regular

Chomsky’s hierarchy of grammars (1956)

HMM
introns
exons
CpG islands
intergenic

SCFG
non-coding genes
ncRNAs
siRNAs

these have 
palindrome 
components

Noan Chomsky, 1928--  computational linguist, MIT

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover
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Recent discovery:
Intergenic space has lots and lots of genes! Not junk after all.

genes

W. W. Gibbs, The unseen genome, Scientific American, 11/03

intergenic space
nearly 98% in
higher mammals like us!
Often called junk DNA

DNA sequence

RNA-genes or noncoding genes.
Noncoding RNA (ncRNA)

The RNA remains in the cell and performs its own functions! 

But these are different kinds of genes. They generate
RNA which do not  code for proteins. 

P. P. Vaidyanathan, ISCAS
Plenary, 5/24/2004,Vancover



Recall Crick’s Central dogma of molecular biology: 

DNA                      mRNA                       proteintranscript translate
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RNA molecules acknowledged by central dogma

But now biologists have found many more ncRNAs.
Central dogma of molecular biology challenged!

mRNA: messenger RNA
     The gene is transcribed into mRNA which
     carries the genetic code to ribosome

tRNA!:transfer RNA
    helps in translation of mRNA to protein

rRNA: ribosomal RNA!! 
     helps in translation of mRNA to protein 

A few others like snoRNA,  etc. These are the classic non-coding RNAs.
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The heroic detective story

There was once a C. Elegans baby that would not grow up beyond
the first (of four) larval stage; kept repeating stage 1.
Getting bigger but not growing up. 

John Travis, “Biological dark matter”, Science News, 1/02

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



This RNA had its own function: regulate other protein coding
genes responsible for normal growth.

There was a defective gene responsible for this. 

In the healthy worm the gene’s  function was to release a
tiny RNA molecule (22 bases long) into the cell.

In the defective worm the gene was not generating this RNA properly.

Ambrose et al., 1993 (Dartmouth medical school, Hanover, N. H).

This was the first nc-RNA to be taken seriously (other than the 
classic ones).
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Heriditary information is carried by

1. Protein-coding genes (known for many years).
2. ncRNA genes.
3. Epigenetic layers

Today nc-RNA genes are recognized to be extemely
crucial to the functioning of cells.

Scientific American, December 2003 P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



We know protein coding genes can be identified on the computer.

ncRNA genes are much more difficult to identify on the computer.

Still an open problem in computational molecular biology!
But why is it so challenging? 

What is there in it for the signal processor?

•  ncRNA could be very small (e.g., 22 bases)

• Other reason: we have to examine secondary structure (see later).

• Cannot go by size. Protein coding genes with 7 bases are known! 

• There is no codon bias (period 3) or open reading frame (ORF) 
• No start and stop codons
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S. R. Eddy, Nature reviews, GENETICS, 12/01

A new discipline called comparative genome analysis helps to distinguish coding
genes from nc-genes.

360-base bacterial regulatory ncRNA CsrB gene: (first thought to be   protein coding gene)
Example 1

Example 2
The plant (Medicago) ENOD40 gene was thought to be an ncRNA gene based on sequence
analysis. Recently based on comparative genome analysis, found to encode two tiny proteins
(13 and 27 amino acids long).

Computational identification of ncRNA genes

Does not work perfectly yet

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



Comparative genomics
If two or more species have a common stretch of DNA then it is
probably doing something important. Otherwise nature would 
not have conserved it for millions of years.

To compare genomes, one has to solve the alignment problem.

xxAATAGCGAxxxxxxxxxxxAATACxxxAAATACCG
xxxxxxAATAGCGAxxxxxAATACxxxxxAAATACCG

Multiple-alignment problem with gaps and mutations

Hidden Markov models, again useful. Lots of good problems for theoreticians!

xxxxxxAAGAGCGAxxxxxAATACxxxxxAAAGTCCG
xxxxxxAAAGCGAxxxxxAATACxxxxxAAATAAACCG

Scoring problem

P. P. Vaidyanathan, ISCAS Plenary, 5/24/2004,Vancover



The human genome has been compared with

Cows
Dogs
Pigs
Rats
7 others …

And there were 1,200 common segments; 154 in intergenic area.

Study by NHGRI (National Human Genome research institute)
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• E. Coli bacterium has 4200 protein  coding genes. 
  and several hundered nc-RNA genes.

• About 50% of genes in mice could be nc-RNA genes.

• C. Elegans probably has over 200 micro-RNA genes (20%).

• Many nc-RNA genes have been found in flies, worms, humans.

Intergenic space = biological dark matter?

Examples
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But apparently the number of ncRNA genes does!

• Worms have only twice as many protein-coding genes as bacteria

• Humans: probably only twice as much (about 27,000)
• Rice plant: more genes than humans! 

Number of protein-coding genes does not scale well
with organism’s complexity
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Notice the secondary structure created by base pairing in
blue shaded areas

dsrA RNA in E. Coli

See S. R. Eddy, Nature Reviews, 12/01 
for many examples and detailed discussions

          U
      U    U
   A          C
       G   C
       A   U
       C   G
       U   G
       A   U
       C   G
       A   U
AAC      AAC

                                C
    AUCCCGACCC   C
                                       U
    UAGGGCUGGG  C
   U                          A
U

    
        U
    U      C
  C          U
     G    U
     U    G
     G    C
     A    U
     A    U
     U    A
     U    A
     U    G
              C
     U    A
     U    A
     U    G
     A    U
     A    U
     G    U  5’ end

3’ end

C           G
A                 U

Functionality of ncRNAs  depends mostly on their  secondary structure.
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tRNA molecule (clover-leaf form)

http://www.ebi.ac.uk/microarray/biology_intro_files/tRNA.htm

Notice amazing amount of secondary structure



xxxAATCxxxxxxxxxxxxxxxxxxxxxxxGATTxxxxxxxxxxx
Linear sequence representing an ncRNA-gene

xxxAATCxxxxxxxxxxxxxxx

xxxxxxxxxxxTTAGxxxxxxxxxxxxxxx

xx
xx
x Folded sequence

HMMs cannot represent palindromes!
We need context-free grammars, and the search is more difficult.

Compuational biologists try to identify ncRNA genes by looking
for the palindrome patterns buried in the linear sequence. 
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T T G T T C G A A G A A C G
T T C T T A G A A T A A G G

C           G
A                 T

These two sequences will probably fold into the same  secondary
structure or shape. And that is what really matters  as far as 
biochemical function is concerned.

Finding a particular ncRNA gene does not necessarily mean looking
for a particular sequence. We really are looking for hidden
palindromes at appropriate places.
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Given the HMM and an output sequence y(1),y(2), …. 
how to compute the state sequence which most likely generated it?
Viterbi’s algorithm (same as the one in digital communications)

Given the HMM and an output sequence y(1),y(2), …. 
how to compute the probability that the HMM generates this? 
Forward-backward algorithm

How to adjust the model parameters S and P such that they are
optimal for an application, e.g., to represent exons? 
Training; Expectation Maximization algorithm (Baum-Welch).

Routine steps in the application of HMM
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xxxAATCxxxxxxxxxxxxxxx

xxxxxxxxxxxTTAGxxxxxxxxxxxxxxx

xx
xx
x Folded RNA sequence

HMMs cannot represent palindromes!

We need context-free grammars

For example
•  Is there a Viterbi-like algorithm?
•  Is there a forward-backward algorithm?
•  Is there a Expectation-Maximization-like algorithm?

Ongoing research topic in computational molecular biology today.

How to systematically develop algorithms based on such grammars?

Need FA!ST algorithms because genomes are looong!
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Molecular biology involves signal processing, computer
science, mathematics, informatics,  all coming together
wonderfully!

Biology today is not just wet stuff in smelly labs!

End of this part
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Outline
• Molecular biology background

• Computational gene-finding

• Spectral analysis (Fourier, wavelet, correlations)

•! Hidden Markov Models and sequence analysis

• New world of non-coding genes

•  References
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Continue
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