

Tutorial Notes

Tutorial 1: Design of Continuous-Time Filters from 0.1 Hz to 2.0 GHz

Presented by: Edgar Sánchez-Sinencio, Texas A&M University José Silva-Martínez, Texas A&M University

Sunday Morning, May 23, 08:30 - 11:30

Tutorial Notes

Tutorial 1: Design of Continuous-Time Filters from 0.1 Hz to 2.0 GHz

Presented by: Edgar Sánchez-Sinencio, Texas A&M University José Silva-Martínez, Texas A&M University

Sunday Morning, May 23, 08:30 - 11:30

Continuous-Time Filters	from 0.1Hz to 2.0GHz
Outline	9
Introduction and Motivation	
• A family of Transconductance for (applications).	different frequency ranges
 Common-mode feedforward and feedf	edback strategies needed
 Frequency- and Q-tuning technique 	es for OTA-C filters
2. Sanchez-Sinencio - 3 -	J. Silva-Martinez

EXPERIMENTAL RESULTS FOR THE DIFFERENT OTA DESIGNS				
PARAMETER	REFERENCE	SD+CD	FG+CD	BD+CD
G _M (nA/V)	9.4	9.3	9.2	9.4
HD ₃ (%)	0.9@162mV _{pp}	1.0@242mV _{pp}	1.1@330mV _{pp}	0.9@900mV _{pp}
Input noise (µVrms)	18.1	26.1	39.1	104.7
SNR@1%HD ₃ (dB)	69.9	70.3	69.5	69.6
I _{BIAS} (nA)	2.6	120	232	560
Key: SD source degeneration CD current division FG floating gate BD bulk driven				
Sanchez-Sinencio		- 51 -		J. Silva-Martinez

References

- C.F. Wheatley and H.A. Wittlinger," OTA obsoletes OP AMP", P. Nat. Econ. Conf. pp. 152-157, Dec. 1969.
- [2] M. Bialko and R.W. Newcomb. "Generation of all finite linear circuits using Integrated DVCCS," IEEE Trans. on Circuit Theory, vol CT-18, pp.733-736, Nov. 1971.
- [3] S. Franco," Use Transconductance Amplifier to make Programmable Active Filters," *Electronic Design*, vol 21, pp. 98-101, September 1976.
- [4] T. Deliyanis," Active RC Filters Using Operational Transconductance Amplifier and Operational Amplifier," *Int. J. of Circuit Theory Appl.* Vol 8, pp. 39-54, Jan. 1980.
- [5] K.S. Tan, and P. Gray, "Fully-integrated analog filters using bipolar-JFET technology", *IEEE J. Solid-State Circuits*, SC-13, (6), pp. 814-821, 1980.
- [6] K. Fukahori, "A bipolar voltage-controlled tunable filter", *IEEE J. Solid-State Circuits*, SC-16, (6), p0p. 729-737, 1981.
- [7] H.S. Malvar, "Electronically Controlled Active Filters with Operational Transconductance Amplifier," *IEEE Trans. Circuit Syst.*, vol CAS-29, pp. 333-336, May 1982.
- [8] H. Khorramabadi and P.R. Gray, "High Frequency CMOS Continuous-Time Filters," IEEE J. Solid-State Circuits, Vol. SC-19,no. 6,pp 939-948, December 1984.
- [9] A. Nedungadi and T.R. Viswanatan. "Design of Linear CMOS Transconductance Elements," *IEEE Trans. on Circuits and Systems*, Vol. 31, pp. 891-894, October 1984.

E. Sanchez-Sinencio

- 128 -

J. Silva-Martinez

[10]	J.L. Pennock, "CMOS triode transconductor for continuous-time active integrat filters", <i>Electron. Lett.</i> , 21, pp. 817-818, 1985.	ed
[11]	R. L. Geiger and E. Sánchez-Sinencio, "Active Filter Design Using Operational Transconductance Amplifiers: A tutorial", IEEE Circuits and Devices Magazine, pp. 20-32, March 1985.	vol. 1,
[12]	R.L. Geiger, and E. Sánchez-Sinencio, "Active filter design using operational tr conductance amplifiers: a tutorial:, <i>IEEE Circuits Devices Mag.</i> , 2, (1). Pp. 20-1985.	ans- 32,
[13]	A. Nedungadi, and R.L. Geiger, "High frequency voltage controlled continuous- low-pass filter using linearized CMOS integrators", <i>Electron. Lett.</i> , 22, pp. 729- 1986.	time 731,
[14]	E. Seevinck, and R.F. Wassenaar, "A versatile CMOS linear transconductor/sq function circuit", <i>IEEE J. Solid-State Circuits</i> , 22, pp. 366-377, 1987.	uare-law
[15]	E. Sánchez-Sinencio, R.L. Geiger, and H. Nevarez-Lozano, "Generation of co time two integrator loop OTA filter structures", <i>IEEE Trans. Circuits Syst.</i> , 35, 1946, 1988.	ntinuous- op. 936-
[16]	F. Krummenacher and N. Joehl. "A 4 MHZ CMOS Continuous-Time Filter with On- Chip Automatic Tuning," <i>IEEE J. Solid-State Circuits</i> , vol. 23, pp. 750-758 June 1988.	ר י,
Sanchez	-Sinencio - 129 -	J. Silva-Martinez

F

Γ

 [17] A. Brambila, G. Espinosa, and E. Sánc operational transconductance amplifier filters 4, pp. 118-121, 1989. [18] S.N. Filho, M.C. Schneider, and R.N.G. Regrated continuous-time circuit applications", 1989. [19] P.M. VanPeteghem, and R. Song, "Tuning continuous-time filters", <i>IEEE Trans. Circuits</i> [20] K.A. Kozma, D.A. Johns, and A.S. Sedra, "A continuous-time filters", <i>Proceedings of IEEI</i> [21] J. Silva-Martínez, M.S.J. Steyaert, and distortion transconductor for high-frequency <i>State Circuits</i>, 26, pp. 946-955, 1991. [22] J. Silva-Martínez, M. Steyaert, and W. Sans tuning of continuous-time filters", <i>Proceedir Circuits</i> and Systems, pp. 1451-1455, 1991. [23] G.A. Deveirman, and R.G. Yamasaki, "A 2 equiripple linear-phase lowpass filter", <i>Procee</i> 1992. 	thez-Sinencio, "Noise optimization s", <i>Proceedings of IEEE ISCAS 89</i> , V obert, "New CMOS OTA for fully inte <i>Electron. Lett.</i> , 25, (24), pp. 1674-163 strategies in high-frequency integrate <i>s Syst.</i> , 36, (1) pp. 1163-1166, 1990. An adaptive tuning circuit for integrate <i>E ISCAS</i> , pp. 1163-1166, 1990. W. Sansen, "A large signal very I continuous-time filters", <i>IEEE J. So</i> en, "A Novel approach for the autom <i>ngs IEEE International Symposium of</i> 27 MHz programmable bipolar 0.05° <i>eedings of IEEE ISSCC-92</i> , pp. 64-65	n in Vol. - 75, ated ed ow- olid- atic on 5,
E. Sanchez-Sinencio - 13	0 - J	l. Silva-Martinez

E. Sano	hez-Sinencio	- 131 -	J. Silva-Martinez
	Systems I: Regular, Vol.: 42, Issu	e: 11 , Nov. 1995	
	Fundamental Theory and Applicati	ions, IEEE Transactions on [see al	so Circuits and
	"Low-voltage CMOS analog circuit	ts" IEEE Trans. On Circuits and Sy	stems I:
[3	2] Hosticka, B.J.; Brockherde, W.; Har	mmerschmidt, D.; Kokozinski, R.;	
	Appl 42 np 896-903 1995	EEE TTANS. CITCUIS Syst. 1, FUIIdar	1. Theory
[3	1] F. Rezzi, A. Baschirotto, and R. C	Castello, "A 3V 12-55 MHz BiCMO	S pseudo-
	Electron. Lett., 31, pp. 511-513, 19	995.	
[3	0] JY. Kim, and R.L. Geiger, "Charac	cterisation of linear MOS active atte	nuator and amplifier",
14	G_C filters by use of lossy integrat	tors", Proceedings of IEEE ISCAS	<i>94</i> , pp. 281-284, 1994.
[2	1994. A Wysynski and B Schaumann '	"Avoiding common-mode feedback	(in continuous-time
	with gain enhanced linearity and o	utput impedance", Electron. Lett., 3	0, (3), pp. 211-212,
[2	B] A. Wysynski, "Low-voltage CMOS	S and BiCMOS triode transcondu	ctors and integrators
	processing", (Kluwer Academic P	<i>ublishers)</i> , pp. 131-140, 1993.	
۲	continuous-time fully differential si	anal processing in Analog integrate	ed circuits and signal
c1	tunable over the VHF range, IEE	the common mode component	in CMOS
[2	6] W.M. Snelgrove, and A. Shoval, "A	balanced 0.9 μm CMOS transcond	luctance-C filter
	capacitor-transconductance filters'	", Electron. Lett., 28, pp. 1185-118	7, 1992.
[2	5] J. Ramírez-Angulo, and E. Sánche	ez-Sinencio, "Programmable BiCM	DS transconductor for
Ľ۲	Academic Publishers). Boston, 19	92.	actor inters, (Nawer
21	1] I.F. Kardontchik "Introduction to th	e design of transconductanctor-ca	acitor filters" (Kluwer

 [32] S.L. Smith, and E. Sánchez-Sinencio, "Low voltage integrators for high-frequency CMOS filters using current mode techniques", <i>IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.</i>, 43, pp. 39-48, 1996. [33] G. Efthivoulidis, L. Toth, and Y.P. Tsividis, "Noise in Gm-C filters", <i>IEEE Trans. onCircuits Syst. II, Analog Digit, Signal Process.</i>, 45, (3), pp. 295-302, 1998. [34] J.M. Stevenson, and E. Sánchez-Sinencio, "An accurate quality factor tuning scheme for IF and high-Q continous-time filters", <i>IEEE J. Solid-State Circuits</i>, 33, pp. 1970- 1978, 1998 [35] T. Itakura, T. Ueno, H. Tanimoto, and T. Arai, "A 2 V_{pp} linear input-range fully balanced CMOS transconductor and its application to 2.5V 2.5 MHz Gm-C LPF", <i>Proceedings of IEEE CICC</i>, pp. 509-512, 1999. [36] S. Solis-Bustos, J. Silva-Martínez, F. maloberti, and E. Sánchez-Sinencio, "A 	
 [32] S.L. Smith, and E. Sánchez-Sinencio, "Low voltage integrators for high-frequency CMOS filters using current mode techniques", <i>IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.</i>, 43, pp. 39-48, 1996. [33] G. Efthivoulidis, L. Toth, and Y.P. Tsividis, "Noise in Gm-C filters", <i>IEEE Trans. onCircuits Syst. II, Analog Digit, Signal Process.</i>, 45, (3), pp. 295-302, 1998. [34] J.M. Stevenson, and E. Sánchez-Sinencio, "An accurate quality factor tuning scheme for IF and high-Q continous-time filters", <i>IEEE J. Solid-State Circuits</i>, 33, pp. 1970-1978, 1998 [35] T. Itakura, T. Ueno, H. Tanimoto, and T. Arai, "A 2 V_{pp} linear input-range fully balanced CMOS transconductor and its application to 2.5V 2.5 MHz Gm-C LPF", <i>Proceedings of IEEE CICC</i>, pp. 509-512, 1999. [36] S. Solis-Bustos, J. Silva-Martínez, F. maloberti, and E. Sánchez-Sinencio, "A 	
 [33] G. Efthivoulidis, L. Toth, and Y.P. Tsividis, "Noise in Gm-C filters", <i>IEEE Trans.</i> onCircuits Syst. II, Analog Digit, Signal Process., 45, (3), pp. 295-302, 1998. [34] J.M. Stevenson, and E. Sánchez-Sinencio, "An accurate quality factor tuning scheme for IF and high-Q continous-time filters", <i>IEEE J. Solid-State Circuits</i>, 33, pp. 1970-1978, 1998 [35] T. Itakura, T. Ueno, H. Tanimoto, and T. Arai, "A 2 V_{pp} linear input-range fully balanced CMOS transconductor and its application to 2.5V 2.5 MHz Gm-C LPF", <i>Proceedings of IEEE CICC</i>, pp. 509-512, 1999. [36] S. Solis-Bustos, J. Silva-Martínez, F. maloberti, and E. Sánchez-Sinencio, "A 	
 [34] J.M. Stevenson, and E. Sánchez-Sinencio, "An accurate quality factor tuning scheme for IF and high-Q continous-time filters", <i>IEEE J. Solid-State Circuits</i>, 33, pp. 1970-1978, 1998 [35] T. Itakura, T. Ueno, H. Tanimoto, and T. Arai, "A 2 V_{pp} linear input-range fully balanced CMOS transconductor and its application to 2.5V 2.5 MHz Gm-C LPF", <i>Proceedings of IEEE CICC</i>, pp. 509-512, 1999. [36] S. Solis-Bustos, J. Silva-Martínez, F. maloberti, and E. Sánchez-Sinencio, "A 	
 [35] T. Itakura, T. Ueno, H. Tanimoto, and T. Arai, "A 2 V_{pp} linear input-range fully balanced CMOS transconductor and its application to 2.5V 2.5 MHz Gm-C LPF", <i>Proceedings of IEEE CICC</i>, pp. 509-512, 1999. [36] S. Solis-Bustos, J. Silva-Martínez, F. maloberti, and E. Sánchez-Sinencio, "A 	
[36] S. Solis-Bustos, J. Silva-Martínez, F. maloberti, and E. Sánchez-Sinencio, "A	
60dB Dynamic Range CMOS Sixth-Order 2.4HZ Low-Power Filter for Medical Applications," <i>IEEE Trans. on Circuits and Systems-II</i> , Vol 47, No. 12, pp. 1391-1398, December 2000.	
[37] A. Veeravalli, E. Sánchez-Sinencio, and J. Silva-Martínez, "Transconductance amplifier structures with very small transconductances: A comparative design approach", <i>IEEE J. Solid-State Circuits</i> , Vol. 37, No. 6, pp. 530-532, May 23 2002.	
E. Sanchez-Sinencio - 132 - J. Silva-Martin	inez

