System design considerations for high speed UWB wireless communications

V. Srinivasa Somayazulu Corporate Technology Group Intel Corporation v.srinivasa.somayazulu@intel.com

ISCAS 2004 May 23, 2004

Outline of Talk

Introduction to UWB

- Definition
- Capacity considerations
- Applications and usage models
- The UWB Propagation Channel
 - Channel Measurements and Modeling
 - Implications for System Design
- UWB architectural options and design trade-offs
 - Impulse radio
 - Multi-carrier
- Other design challenges e.g., coexistence
- Conclusion

int_el.

Introduction to UWB

UWB for Communication – A First Definition

- Bandwidth definition:
 - occupied fractional BW0.2 or
 - absolute BW > 500 MHz
- Power spectral density limited
- FCC R&O opens up 3.1 to 10.6 GHz frequency band for UWB communications systems

int_el.

UWB spectrum regulations

- UWB is presently legal only in the US
 - · Regulatory activity underway in Europe, Japan, and China
- Consistent "rules of the game"
 - Open standardization is critical for worldwide market adoption

intel

Very Low Power Spectral Density (PSD)

- FCC limits ensure that UWB emission levels are exceedingly small
 - Part 15 limits: -41.25 dBm/MHz
 - At or below spurious emission limits for <u>all</u> radios and unintentional emitters
 - Limits the Power Spectral Density [W/Hz] and not total average transmit power as is typical with other unlicensed bands [e.g. 5 GHz];
 - Avg. transmit power scales with BW
- Total emitted power over several gigahertz of bandwidth is a fraction of a milliwatt

int_{el}.

UWB Channel Capacity

 Capacity in AWGN (bits/s/Hz)

 $C = log_2(1+SNR)$

- High SNR regime: SNR > 0 dB or C > 1 bit/s/Hz
 - C = log₂(SNR) : capacity increases logarithmically with SNR
 - 1 bit/s/Hz for every 3 dB increase in SNR
 - Use higher order modulations to increase rate - e.g. narrowband, bandwidth efficient systems such as 802.11a/g, etc.

UWB Channel Capacity

 Low SNR regime: SNR < 0 dB or C < 1 bit/s/Hz

- C = SNR log₂ e : capacity increases linearly with SNR
 - Coding gain plays much bigger role than in high SNR regime
- Binary modulation gets us close to optimality – no gains from using higher order modulation
- Use bandwidth to increase rate: e.g., UWB

int_{el}.

int_{el}.

UWB Channel Capacity Capacity at <u>10 meters vs. UWB BW</u>

 $-C = B \log_2 (1 + P/(BN))$

UWB complements longer range access technologies intel.

UWB Indoor Multipath Channel

int_el.

Indoor Multipath Propagation

- Channel model is essential for evaluating different PHY approaches
- IEEE 802.15.3a Channel modeling subcommittee formed to come up with a model to use in evaluation of proposals
- Sub-committee received many contributions from AT&T, IMST, Intel, Mitsubishi, Time Domain, and others
 - Multiple sets of measurements that span home and office settings

-Some sets cover 3-10 GHz frequency range

int_{el}.

Indoor Multipath Propagation

• Example NLOS Multipath Realization

int_el.

Multipath Channel Characteristics

Target Channel	$CM 1^1$	$CM 2^2$	$CM 3^3$	$CM 4^4$
Characteristics ⁵				
Mean excess delay (nsec) τ_m	5.05	10.38	14.18	
RMS delay (nsec) τ_{rms}	5.28	8.03	14.28	25
NP _{10dB}			35	
NP (85%)	24	36.1	61.54	\bigcirc
Model Characteristics ⁵				
Mean excess delay (nsec) τ_m	5.0	9.9	15.9	30.1
RMS delay (nsec) τ_{rms}	5	8	15	25
NP _{10dB}	12.5	15.3	24.9	41.2
NP (85%)	20.8	33.9	64.7	123.3
Channel energy mean (dB)	-0.4	-0.5	0.0	0.3
Channel energy std (dB)	2.9	3.1	3.1	2.7

* Times expressed in nano-seconds

Multipath Channel Characteristics

- High-level observations based on measurements
 - RMS delay spread smaller at the shorter ranges (< 10 meters)
 - 5-25 nsec vs. 50+ nsec for WLANs
 - Number of resolvable paths increases as bandwidth increases
 - Channel energy spread over a large number of paths
 - Clustering of arrival times observed in several measurements
 - Saleh-Valenzuela (S-V) model, ∆-K model, Deterministic echo modeling, etc. as proposed models
 - Best fit to per path fading amplitude follows log-normal distribution

int_el.

Multipath Channel Characteristics

Efficient multipath energy capture critical to system design

• Example using DSSS UWB system:

- Optimal timing information.
- Perfect channel estimation.
- Largest RAKE fingers over the entire span of the channel impulse response are selected.
- No shadowing
- Does not reflect degradation due to ICI/ISI.
- Loss in captured energy averaged over all 100 channel realizations.

Observations:

- 90th %-ile channel realization has a loss of 3.8 dB with a 16 finger RAKE for CM4 channel environment.
- 90th %-ile channel realization has a loss of ~2 dB with a 16 finger RAKE for a CM3 channel environment.

^{*}J. Balakrishnan, et. al., Texas Instruments

Multipath Channel Modeling

Mathematical model

- Poisson point process used to determine arrival times of both clusters and rays within a cluster (following S-V model)
- Amplitudes modeled as product of a log-normal shadowing and log-normal fading term
- Model parameters can be found in IEEE 802.15.3a channel modeling sub-committee final report

$$h_{i}(t) = X_{i} \sum_{l=0}^{L} \sum_{k=0}^{K} \alpha_{k,l}^{i} \delta(t - T_{l}^{i} - \tau_{k,l}^{i})$$

X_i = shadowing

intel. $T_{k,l}$ = the delay of the *k*-th path within the *l*-th cluster relative to

UWB System Bandwidth

Advantages for wider bandwidth:

- FCC's UWB regulations are p.s.d. based : transmit power increases with the bandwidth.
 - But higher propagation losses at high frequencies limit benefit to link
- Multiple access performance:
 - Link throughput is proportional to the bandwidth.
 - Multiple access isolation, d_{ref}/d_{int} ~ sqrt (bandwidth)
- Better Immunity to Frequency-Selective Fading
- Disadvantages of wider bandwidth:
 - typically results in higher cost, power.

int_{el}.

UWB System Bandwidth

- One of the key advantages to Ultra-Wide-Band technology is its inherent immunity to frequency-selective fading.
 - function of the ratio of bandwidth to center frequency.
- Narrowband signals cannot resolve multipath components.
 - the entire frequency band could fall in a deep spectral null.
- Impact of channel bandwidth on multipath characteristics:
 - Consider 100 normalized channel impulse responses for each CM environment
 - Filter the channel responses at specified bandwidth B, centered at $f_c = 5 \text{ GHz}$
 - Plot CDF of energy in filtered channel

int_{el}.

Effect of channel bandwidth

Effect of channel bandwidth

int_{el}.

Effect of channel bandwidth

 Based on these data, it appears there's relatively little difference between the 500 MHz curves and the 2GHz bandwidth curves

-500 MHz channels should offer reasonable immunity from fading

UWB Architectural Options and Design Space

int_{el}.

Possible architectures for high-rate UWB systems

Starting point for communications systems

-7.5 GHz of new, unlicensed spectrum

- Spectral mask from 3.1-10.6 GHz
 Different indoor/outdoor masks
- 500 MHz minimum instantaneous BW per transmission
- Power spectral density limit (- 41.3 dBm/MHz)
- Peak power limits
- No legacy limitations or backward compatibility requirements

int_{el}.

Impulse Radio...the first UWB design

 Radio technology that modulates impulse based waveforms instead of continuous carrier waves

UWB System Architectures

But...many other options are available

- -(1) Impulse radio based
 - Single impulse occupies 3.1-10.6 GHz or some subset
- (2) Continuous single-carrier based
 - Direct sequence spread spectrum techniques extended to GHz chip rates
- (3) Multi-carrier based
 - Divide spectrum into a number of 'carriers'
 - Multi-carrier CDMA, OFDM, multi-banding (frequency hopping)
- (4) Hybrid approaches
 - MB-OFDM, pulsed multi-banding, pulsed DS-CDMA

int_{el}.

UWB System Architectures

- Key challenges:
 - -Multipath energy capture
 - -Robustness to NBI
 - -Tx spectrum flexibility
 - Adapt to future international regulations
 - Adapt to current and future narrowband services
 - -Multiple access and near-far effects
 - Peer-to-peer and ad hoc usage will result in near-far problems
 - Low cost and low power consumption
 Desire systems which are CMOS friendly

int_{el}.

Design Parameters

- Spreading / coding / pulsing / equalization
 - Similar trade-offs for high-rate CDMA systems + new design parameter: *pulsing*
 - When is it better to spread vs. pulse?
 - In multipath...
 - Spreading (non-zero chips) will experience inter-chip interference (ICI) due to non-zero autocorrelation with delays
 - Pulsing (zeros between pulses) is orthogonal to multipath spreads not equal to pulse period

-In multi-user environment...

- -Spreading results in processing gain which reduces multiple access interference (MAI) after de-spreading
 - -Multipath components from interferer increases level of MAI
- -Pulsing experiences collisions and error probability ~ collision rate ~ 1 / pulse separation period 29

Design Parameters

Comments on pulsing / spreading trade-offs

- Pulsing offers good performance in multipath
 - Non-overlapping paths are orthogonal to each other
- Spreading offers good multiple access interference mitigation
- Performance of both are comparable when multipath and MAI are considered
 - Not losing anything by pulsing
- Comments on coding / equalization trade-offs
 - Treat ISI as noise, and mitigate through low-rate code, spreading, and rake
 - Equalize ISI with linear equalizer (use preamble to estimate channel coefficients or as training sequence)
 - Joint decoding/non-linear equalizer (use decoded bits in DFE)
 - Use OFDM waveform with FFT in receiver to capture energy with cyclic prefix which mitigates ISI

int_{el}.

UWB System design approaches

- "Carrier" or wavelet based approaches dictated by
 - FCC spectral mask
 - Overlay of NB interfering systems
- Combine spreading and pulsing for
 - Good range in multipath
 - Good MAI performance
 - Ease NBI suppression complexity
- One approach pulsed multicarrier CDMA (MC-CDMA):
 - Spreading / coding in the frequency domain
 - Pulsing in the time domain

UWB System design approaches

•Stagger bands in time to relax receiver requirements

•avoid wideband ADC/DACs, mixers etc.

int_{el}.

Receiver Architectures

Analog correlation

- Pros: Simple implementation, removes NBI before sampling
- Cons: Inefficient energy capture...need several rake arms

Direct RF sampling

- Pros: Reduces number of RF components, single-bit sampling possible
- Cons: Requires high rate sampler and could be sensitive to strong interferers when singlebit sampling used
- Direct down-conversion with Nyquist sampling
 - Pros: Enables digital energy capture techniques (FFT with OFDM, digital rake)
 - Cons: Requires moderately high-rate ADC, power consumption depends on number of bits in ADC
- Need to efficiently capture multipath energy steers towards a highly digital receiver
- Spectral flexibility dictated by need to co-exist with different narrowband systems, cope with uncertain direction of worldwide regulatory proceedings
- Unique receiver components for UWB:
 - ADC requirements
 - Modulation typically limited to QPSK
 - High spreading factor allows low number of bits in ADC (<4-5 bits possible)
 - Small number of bits allows more power efficient flash ADC architectures
 - Low Peak Tx power (no external PA required)
 - Relaxed phase noise requirements due to low order modulation

int_{el}.

Receiver Architectures

ADC bit trade-offs for UWB systems

 Example results: MB-OFDM system, 110 Mbps mode, 2x oversampling (1056 MHz), low order baseband filters (CMOS friendly)

intط

IEEE Standards Status

- 2 proposals remain
 - Single-carrier, MBOK, DS-CDMA
 - Multiband OFDM (MB-OFDM)
- Technology Trends
 - Highly digital implementations necessary for efficient multipath energy capture
 - DS-CDMA can use rake + equalizer (either RF sampling or chiprate sampler expected)
 - MB-OFDM uses FFT + low-rate code using baseband sampler
 - Fundamental architectural differences which yield different implementation challenges and performance characteristics
 - MB-OFDM currently facing regulatory challenges due to frequency hopping nature of waveform and potential interference into wideband receivers
 - However, important to note that differences in the interference caused by the two systems is much smaller than the differences compared to FCC UWB limits being argued in world-wide regulatory bodies for UWB in general.

UWB Coexistence

int_el.

UWB Coexistence

- UWB shall NOT cause harmful interference to other wireless systems
 - UWB (as overlay approach) needs to be proven not to cause harmful interference
 - Regulatory challenges still exist (inside/outside US)
 - Needs to adapt to future spectrum allocations and new spectrum usage models
- Robust to interference from other wireless systems
 - Close proximity operation with 802.11a/b/g/n WLAN systems
 - Home and office
 - Receiver issues to consider
 - Number of ADC bits and non-linear impacts of clipping
 - Dynamic range of LNA and following RF components (mixer, LPF)
 - DSP techniques

UWB Coexistence

Impact of modulation on interference

 Need to ensure spectral flatness of waveform
 Limit spectral line content

Pulse Repetiton Frequency (PRF)

Frequency

UWB Coexistence

How can UWB interference be modeled?

int_{el}.

- WGN works in most cases
- Factors that may effect WGN model: modulation, PRF, *f*₀, and narrowband waveform (bandwidth) and receiver signal processing (coding, interleaving)
- $-N_p = B_p/B_s$: ratio of PRF to symbol rate of narrowband system

Impact of 802.11a on UWB Rx AFE

- Undesired (802.11a interferer) signal level at the antenna:
 - $P_{INT} = 16 20 \log 10(4\pi \times 5.15e9 \times 0.3/c) = -20.2 \text{ dBm}$
- Requires a total of ~60 dB attenuation in the 802.11a band
 - Target 20-30 dB attenuation in RF BPF
 - Target 30-40 dB attenuation in LPF in baseband
 - Want to minimize external filters and desire low order baseband filters for easier implementation in CMOS
- Required attenuation can be reduced by balancing ADC requirements and signal processing capabilities

LNA and mixer linearity and dynamic range

int_{el}.

Conclusions

- A number of interesting architectures exist for high-rate UWB systems
 - UWB uniqueness: achieve high rates using low order modulation and low rate coding / spreading
 - Allows novel implementations which take advantage of waveform robustness
- Area is ripe for future research
 - Adaptive interference detection, avoidance, and suppression techniques
 - Multi-radio design and integration
 - How to integrate UWB and 802.11a into same chip and operating simultaneously?
 - Cognitive radio enabling
 - Select "best" available in space and time: UWB / 802.11a/b/g/n / 802.16 / W-CDMA
 - "best" could be a function of peak throughput, power consumption, QoS, etc.

Interferer

Accessing the Ultrawideband Channel

John R. Long RF/MMIC Group Electronics Research Laboratory/DIMES Delft University of Technology j.r.long@ewi.tudelft.nl

May 23 2004

TUDelft RF/MMIC Group

ISCAS 2004 Tutorial

Outline

- Introduction
- The UWB link
- Antennas
 - definitions
 - broadband antennas and their characteristics
 - planar antennas
- Circuits
 - broadband amplifiers
 - pulse generation and detection
 - high-speed circuit issues

Expanding RF IC Applications

Peer-to-Peer/Ad Hoc Networks

Ranging and Position Finding

May 23, 2004

j.r.long@ewi.tudelft.nl

© 2004, J.R. Long - pg. 3

ISCAS 2004 Tutorial

Ultrawideband (time-domain) Radio

- Radio transmission of coded pulse train at μW/MHz with potential for high data rates (Mb/s) over short distances.
- Unregulated, use of 3-10GHz band approved by FCC.
- Compatible with digital computing technology, simple air interface electronics.
- Antennas and synchronization are scientific challenges.

Ultrawideband (multi-carrier) Radio

- A multi-carrier system using multiple OFDM carriers in the 3 to 10 GHz band.
- Antennas must also be capable of broadband operation if a single antenna is used, but phase restrictions may be relaxed.
- Can leverage existing narrowband radio hardware in the design.
- Synthesizers must be capable of fast switching in order to hop from one carrier to another efficiently.

May 23, 2004

j.r.long@ewi.tudelft.nl

© 2004, J.R. Long - pg. 5

ISCAS 2004 Tutorial

Ultrawideband Power Limits

Equivalent isotropic radiated power (EIRP) for UWB is
 -41 dBm from 0-700 MHz and 3.1-10.6 GHz indoors (802.11 permits +16 dBm to +29 dBm in 5.3-5.8 GHz band).

- Max transmit power is -41 dBm between 3.1 and 10.7 GHz. This translates to pulse amplitudes on the order of 100 mV.
- Antenna gain is low for an omnidirectional design, and received power is proportional to 1/f² (2 omni antennas). Path loss can be much greater when obstructions are present.

Antennas

pattern from amplitude vs. position

• Antenna connects an RF source to free space. Important parameters are field intensity vs. position (the "pattern), total power radiated, impedance, bandwidth and efficiency.

May 23, 2004	j.r.long	@ewi.tudelft.nl	© 2004, J.R. Long - pg. 9
FUDEIft RF/MMIC Group	The Dipe	ole Antenna	ISCAS 2004 Tutorial
dipole logith	λ/2 dipole ►	Districts of statements (b) (b) (b)	Dipole Antenna Pattern
balanced feed line		H-Plane	E-Plane

- **Current Distribution**
- Antenna pattern depends upon signal wavelength but electric and magnetic fields are perpendicular (TEM). Gain, bandwidth and input Z are also frequency dependent.

Broadband Antennas

 An open ended transmission line is inherently broadband. Height to width ratio is constant to maintain a near constant impedance. Absorber at end needed to damp reflections.

Metal Ground Plane

Substrate

SMA

Connector

TEM Horn Receive Antenna

 TEM horn received signal is proportional to the incident field strength. TDR shows a consistent 50Ω input impedance to the aperture; input impedance is ~50Ω from 4-20GHz.

May 23, 2004

j.r.long@ewi.tudelft.nl

```
© 2004, J.R. Long - pg. 13
```


ISCAS 2004 Tutorial

TEM Horn Tx Step Response

PSPL 4050+7003P PULSER		4.30 9PS PULSE	523 or
	\searrow		Scale Bild 1920
			0ff.set 2.2500
			Sandwidth S0.0 GHz 26.5 SHz
			Chanes! nutascale
10.0 p#/div	-	750HU 10 PS FER DIU 26.0305 #5	External scale

4V, 9ps risetime input step*

Transmission (I = 25cm) between identical 15cm long TEM horns*

 Response of a tx antenna (time domain) is proportional to the derivative of the response of the same antenna used as a receiver. TEM horn output is the first derivative of electrical signal driving it as shown in plot on right.

* After J.R. Andrews, 2003 IEEE Conf. on Wireless Communication Technology.

ISCAS 2004 Tutorial

Conical Antenna Tx Step Response

701	CONE	XMIT AN	T	iscm	TEN RCU	ANT		250	:n (DIST	TANC	E
		1	~	-	+			_		-	-	<u>.</u>
		-/····		++++	++++++		+++	++	++	++	+++	+ + + +
_	-	/		-	1		_	-	_	-	-	
-)	(-	-	+	-		_	-	-	
-	/			-	-	+	20	мп	25	20	DED	DTH

Transmission (I = 25cm) between 7cm cone and 15cm TEM horn*

Transmission (I = 5m) between 7cm cone and 15cm TEM horn*

• Conical antenna scales the transmit signal; TEM horn scales the received signal. The received signal is therefore a faithful representation of the transmitted step, and extra path length just attenuates the signal.

* After J.R. Andrews, 2003 IEEE Conf. on Wireless Communication Technology.

Planar Broadband Antenna Prototypes

*Courtesy of A. Yarovoy, IRCTR/TU DELFT

May 23, 2004

j.r.long@ewi.tudelft.nl

© 2004, J.R. Long - pg. 17

ISCAS 2004 Tutorial

Time Domain Response

Time Response of Butterfly Antenna (2x2.2cm elliptical flares)

• 0.058 Vp-p amplitude with 57% efficiency. *Courtesy of A. Yarovoy, IRCTR/TU DELFT

Antenna Comparison

ISCAS 2004 Tutorial

Silicon RFIC Technology Evolution

- 1985: polysilicon emitter bjt (10GHz f_T) and scalable models
- 1989: sub-micron bipolar/BiCMOS (mobile phone)
- 1990: TLM backend with 5μm thick IMD oxide (RF passives)
- 1992: UHV epitaxial-base SiGe bjt (50GHz f_T)
- 1995: 0.35μm CMOS with 5LM, 25GHz f_T (Bluetooth)
- 2001: 0.13μm CMOS-SOI, 140GHz f_T (broadband/low power)
- 2002: 0.12μm SiGe BiCMOS+Cu (207GHz f_T/285GHz f_{max})

Active Device Comparison

ISCAS 2004 Tutorial

Active Device Bias Current

Silicon devices now outperform III-V's in absolute terms.
 Opportunity for higher frequency/speed, or to reduce power.

Broadband Gain Block

- Cascadable 50 Ohm gain block
- Darlington-connected transistors with compound feedback

May 23, 2004

j.r.long@ewi.tudelft.nl

© 2004, J.R. Long - pg. 23

ISCAS 2004 Tutorial

Measured Performance (0.5µm SiGe)

Noise Figure of 6dB, $IIP_3 = +10dBm$, P_D of 25mW from a 3V supply.

Broadband Low-Noise Amplifier

ISCAS 2004 Tutorial

Single Section Matching

Multi-Section Matching

ISCAS 2004 Tutorial

3-10GHz SiGe Bipolar LNA

• Gyration of emitter inductance forms series LC network and input termination (Ismail and Abidi, ISSCC 2004)

3-10GHz SiGe Bipolar LNA

• 0.18µm SiGe, S_{11} < -10dB, IIP₃ = -5.5dBm (3.5GHz), P_D = 27mW (2.7V). *Ismail and Abidi, ISSCC 2004.

May 23, 2004

j.r.long@ewi.tudelft.nl

© 2004, J.R. Long - pg. 29

ISCAS 2004 Tutorial

3.1-10.6GHz CMOS LNA

• 3-section bandpass filter embedded at input. Series on-chip inductors drive up the noise figure. (Bevilacqua and Niknejad, ISSCC 2004).

Measured Noise Figure*

• 0.18 μ m CMOS, G = 9.3dB, IIP₃ = -6.7dBm (6GHz), P_D = 9mW (1.8V). *Bevilacqua and Niknejad, ISSCC 2004. STD is standard process flow, TW is twin well process.

May 23, 2004

j.r.long@ewi.tudelft.nl

© 2004, J.R. Long - pg. 31

ISCAS 2004 Tutorial

Electro-Optic Impulse Generation

j.r.long@ewi.tudelft.nl

Electrical Impulse

ISCAS 2004 Tutorial

Electronic Pulse Generation

 High speed pulse (10 V amplitude, 45ps risetime) generated using tunnel diodes, Differentiating the step using a passive network forms a 3 V-pk impulse. Second differentiation in antenna give 1.8 Vp-p monocycle.

CMOS Monocycle Generator

 FIltered impulse produces monocycle, 0.03mm² circuit implemented in 0.18μm CMOS consumes 46mW from a 1.8V supply.

May 23, 2004

j.r.long@ewi.tudelft.nl

© 2004, J.R. Long - pg. 35

ISCAS 2004 Tutorial

High-Speed Sampling/Detection

300µm

P-GUARD ↓ DIFF.

Substrate Coupling

0.18µm Bluetooth (Ericsson, 2002)

• Effectiveness depends on doping, number/width of isolating diffusions, frequency, grounding scheme and package.

May 23, 2004

j.r.long@ewi.tudelft.nl

© 2004, J.R. Long - pg. 37

ISCAS 2004 Tutorial

Bondwire Interfaces

j.r.long@ewi.tudelft.nl

- Existing technology developed for radar applications is not easily portable to a UWB WPAN design. New solutions must be found for integrated circuits and compact broadband antenna designs.
- Pulse forming to meet FCC restrictions requires careful codesign of the pulse generator and the transmit and receive antennas. The entire chain must be considered.
- Broadband circuits cannot realize the same level of performance of their narrowband counterparts (NF, P_D, etc.). Realizing high efficiency in the transmitter and receiver circuitry one of the greatest challenges in UWB circuit design.

May 23, 2004

j.r.long@ewi.tudelft.nl

© 2004, J.R. Long - pg. 39

Achieving High Speed Wireless Communications Using a Multi-Band OFDM UWB System

Anuj Batra Member, Group Technical Staff

> DSPS R&D Center Texas Instruments, Dallas

> > May 23, 2004

TEXAS INSTRUMENTS

Making Wireless

Outline

- Motivation for Ultra-wideband Systems.
- Challenges for Designing Ultra-wideband Systems:
 - Overlay of UWB spectrum with licensed and unlicensed bands.
 - Operating bandwidth for initial devices.
 - Worldwide compliance.
- Overview of Multi-band OFDM:
 - Band plan and frequency synthesis.
 - Transmitter and receiver architectures.
 - Systems parameters and system details.
 - Link budget and system performance.
 - Complexity.
- Multi-band Advantages and Conclusions.

Making Wireless

Exploiting Shannon's Theorem To Achieve High Data Rates (1)

- Shannon's Theorem: $C = W \log_2(1 + S/N)$
- For the high S/N regime: $C \cong W \log_2(S/N)$
 - Capacity (C) is linearly related to the Bandwidth (W).
 - Capacity (C) is logarithmically related to S/N.
- For the low S/N regime: $C \cong W(S/N)$
 - Capacity (C) is linearly related to both S/N and Bandwidth (W).
 - More bang for your buck!
- Two mechanisms for achieving higher data rates:
 - Increasing effective *S*/*N*: decreasing the range of the system, or adding an advanced FEC code.
 - Increasing bandwidth.

Exploiting Shannon's Theorem To Achieve High Data Rates (2)

- For bandwidth constrained system using a single antenna, the <u>only</u> way to achieve higher data rates is to increase the effective *S*/*N*:
 - Increasing the effective $S/N \Rightarrow$ larger constellation sizes can be supported.
 - Can add advanced FEC codes, but at the expense of increased complexity.
 - Can decrease the range of the system (no one wants this).
- For an average PSD limited system that operates in the low S/N regime, the <u>only</u> way to achieve higher data rates is to increase the bandwidth:
 - By restricting the average PSD, the received power *S* is essentially constrained at a given distance *d*.
 - The typical operating *S*/*N* is low, on the order of 0 dB, for these systems.
 - Increasing bandwidth is a relatively easy way to achieve higher data rates.
 - Can also add advanced FEC codes by increasing complexity.
- The relative easy of increasing BW has generated a push to explore the potential of Ultra-wideband Systems.

TEXAS INSTRUMENTS

Making Wireless

Promise of UWB

- Data rates:
 - Scalable data rates from 55 Mb/s to 480 Mb/s.
 - 110 Mb/s at 10 meters in realistic multi-path environments.
 - 200 Mb/s at greater than 4 meters in realistic multi-path environments.
 - 480 Mb/s at 2 meters in realistic multi-path environments.
- Low cost solutions.
- Low power solutions (PHY: $TX \le 130 \text{ mw}$, $RX \le 160 \text{ mW}$).
- Integrated CMOS solution \Rightarrow Single chip solutions.
- Small form factors.
- Coexistence with current and future devices.
- Quality of Service can support multimedia applications.

Challenges for Design of UWB Systems

- On Feb. 14, 2002, FCC amended the Part 15 rules to allow operation of devices incorporating UWB technology.
- Unprecedented allocation of spectrum.
- Indoor and handheld devices must operate in the frequency band 3.1 – 10.6 GHz.
- The challenge when designing a system is that the UWB spectrum allocation cuts across previously allocated spectrum; both licensed and unlicensed.

6

🤣 Texas Instruments

Making Wireless

What Operating Bandwidth to Use?

- Given that we have 7.5 GHz to use, what should the operating bandwidth be?
- Look at Received Power = TX Power Path Loss, as a function of upper frequency.
- Assume that the TX signal occupies the BW from f_L to f_{U} .
 - Assume that f_L is fixed at 3.1 GHz. Vary upper frequency f_U between 4.8–10.6 GHz.
 - Assume that the transmit spectrum is flat over entire bandwidth.
 - TX power = $-41.25 \text{ dBm} + 10\log_{10}(f_U f_L)$.
- IEEE 802.15.3a has specified a free-space propagation model:

$$P_L(d) = 20\log_{10}\left[\frac{4\pi f_g d}{c}\right] \text{ (dB)}$$

- f_g is the Geometric mean of lower/upper frequencies (10-dB points)
- d is the UWB transmitter-receiver separation distance (assume d = 10 m)
- c is the speed of light

Small Gains From Increasing Upper Frequency

- Increasing the upper frequency to 7.0 GHz (10.5 GHz) gives at most a 2.0 dB (3.0 dB) advantage in total received power.
- On the other hand, increasing the upper frequency, results in an increased noise figure:
 - For f_u = 7.0 GHz, by at least 1.0 dB.
 - For $f_u = 10.5$ GHz, by at least 2.0 dB.
- <u>Result</u>: using frequencies larger than 4.8 GHz increases the overall link margin by *at most* 1.0 dB with the current RF technology, but at the cost of higher complexity and higher power consumption.

- Conclusion: only minimal gains can be realized in the link budget by using frequencies above 4.8 GHz. Link budget translate directly into range.
- <u>Note:</u> using larger operating bandwidth is useful from a multiple access point of view.

TEXAS INSTRUMENTS

Making Wireless

The Benefits of OFDM

- OFDM was invented almost 50 years ago.
- OFDM is a mature technology
- Currently used in several products available today:
 - ADSL, 802.11a/g, 802.16, European Digital TV, Digital Audio Broadcast
- OFDM is also being considered in the following technologies:
 - 4G, 802.11n, 802.16a, 802.20
- High spectral efficiency
- Excellent robustness against multi-path
- Robustness against narrowband interferers

Worldwide Compliance

- By using OFDM, small and narrow bandwidths can easily be protected by turning off tones near the frequencies of interest.
- In addition, tones can be dynamically turned on and off via software in order to comply with changing world-wide regulations.
- For example, consider the radio-astronomy bands allocated in Japan. Only need to zero out a few tones in order to protect these services.

Overview of Multi-band OFDM

Authors and Supporters of Multi-band OFDM

Overview of Multi-band OFDM

- Basic idea: divide the spectrum into bands that are 528 MHz wide.
- Interleave OFDM symbols across all bands to exploit frequency diversity and provide robustness against multi-path and interference.
- Transmitter and receiver process smaller bandwidth signals (528 MHz).
- Prefix provides robustness against multi-path even in the worst case channel environments.
- Insert a guard interval between OFDM symbols in order to allow sufficient time to switch between channels.

Band Plan

• Group the 528 MHz bands into 5 distinct groups.

- Band Group #1: Intended for 1st generation devices (3.1 4.9 GHz).
- Band Group #2 #5: Reserved for future use.
- Because of path loss, the range that is supported by each Band Group will be different, i.e.,

$$R_{max,1} > R_{max,2} > R_{max,3} > R_{max,4} > R_{max,5}$$

- Range differential turns out to be an advantage!
 - Can use range differential to help address multiple access.
 - Example: for applications, such as DVD to HDTV, use Band Group #1 or #2.
 - Example: for applications, such as DSC to laptop, use Band Group #3 or #4.

TEXAS INSTRUMENTS

Making Wireless

Frequency Synthesis (1)

- Center frequencies for the sub-bands:
 - f₁ = 4224 792 = 3432 MHz
 - f₂ = 4224 264 = 3960 MHz
 - f₃ = 4224 + 264 = 4488 MHz

• Example: Frequency synthesis circuit for Band Group #1:

Frequency Synthesis (2)

Circuit-level simulation of frequency synthesis:

- Nominal switching time = ~ 2 ns.
- Need to use a slightly larger switching time to allow for process and temperature variations.

```
TEXAS INSTRUMENTS Making Wireless
```

Multi-band OFDM Transmitter Architecture

- Architecture is similar to that of a conventional and proven OFDM system.
- Major Differences:
 - Time-Frequency kernel specifies the frequency for next OFDM symbol.
 - Constellation size is limited to QPSK (limits size of IFFT/FFT, DAC/ADC).
 - For rates less than 80 Mb/s, we force the input to the IFFT to be conjugate symmetric.
 - Need to only implement the "I" portion of TX analog chain.
 - As a result, only half the analog die size of a full "I/Q" transmitter is needed.
 - Zero-padded prefix limits power back at the transmitter.

Multi-band OFDM Receiver Architecture

Block diagram:

- Architecture is similar to that of a conventional and proven OFDM system.
- Can leverage existing OFDM solutions for the development of the Multi-band OFDM physical layer.

TEXAS INSTRUMENTS

Making Wireless

Multi-band OFDM System Parameters

Info. Data Rate	55 Mbps	80 Mbps	110 Mbps	160 Mbps	200 Mbps	320 Mbps	400 Mbps	480 Mbps
Modulation/Constellation	OFDM QPSK							
FFT Size	128	128	128	128	128	128	128	128
Coding Rate (K=7)	R = 11/32	R = 1/2	R = 11/32	R = 1/2	R = 5/8	R = 1/2	R = 5/8	R = 3/4
Frequency-domain Spreading	Yes	Yes	No	No	No	No	No	No
Time-domain Spreading	Yes	Yes	Yes	Yes	Yes	No	No	No
Data Tones	100	100	100	100	100	100	100	100
Zero-padded Prefix	60.6 ns							
Guard Interval	9.5 ns							
Symbol Length	312.5 ns							
Channel Bit Rate	640 Mbps							
Multi-path Tolerance	60.6 ns							

• System parameters for mandatory and optional data rates:

* Mandatory information data rate, ** Optional information data rate

Convolutional Encoder

- Assume a mother convolutional code of R = 1/3, K = 7. Having a single mother code simplifies the decoder implementation.
- Generator polynomial: $g_0 = [133_8]$, $g_1 = [165_8]$, $g_2 = [171_8]$.

 Higher rate codes are achieved by optimally puncturing the mother code. Code rates supported via puncturing are: 11/32, 1/2, 5/8, 3/4.

TEXAS INSTRUMENTS

Making Wireless

Bit Interleaver

- Bit interleaving is performed across the bits within an OFDM symbol and across six OFDM symbols.
 - Exploits frequency diversity.
 - Randomizes any interference \Rightarrow interference looks nearly white.
 - Latency is less than 2 μs.
- Bit interleaving is performed in three stages:
 - Initially, $(6/T_{SF})N_{CBPS}$ coded bits are grouped together.
 - First stage: the coded bits are interleaved using $N_{CBPS} \times (6/T_{SF})$ block symbol interleaver.
 - Second stage: the output bits from 1st stage are interleaved using $(N_{CBPS}/10) \times 10$ block tone interleaver.
 - The end results is that the data is spread across 6 on-air OFDM symbols; spanning three different frequency bands.
- If there are less than (6/T_{SF})N_{CBPS} coded bits, the data is padded out to align with the interleaver boundary.

Bit Interleaver

• Ex: Second stage (symbol interleaver) for a data rate of 110 Mbps ($T_{SF} = 2$).

• Ex: Third stage (tone interleaver) for a data rate of 110 Mbps.

Zero-Padded Prefix (1)

- In conventional OFDM system, a cyclic prefix is added to provide multi-path protection.
- Cyclic prefix introduces structure into the transmitted waveform \Rightarrow structure in the transmitted waveform produces ripples in the PSD.
- In an average power-limited system, any ripples in the transmitted waveform will results in back-off at the transmitter (reduction in range).
- Ripple in the transmitted spectrum can be eliminated by using a zero-padded prefix.
 - Zero-padded prefix eliminates redundancy in the transmitted waveform.
 - Results in almost no ripple in PSD.

- Provides the same multi-path protection if a cyclic prefix were present.
- Using a zero-padded (ZP) prefix instead of a cyclic prefix is a well-known and wellanalyzed technique.

Zero-Padded Prefix (2)

- A Zero-Padded Multi-band OFDM has the same multi-path robustness as a system that uses a cyclic prefix (60.6 ns of protection).
- The receiver architecture for a zero-padded multi-band OFDM system requires ONLY a minor modification (less than < 200 gates).

 Added flexibility to implementer: multi-path robustness can be dynamically controlled at the receiver, from 1.9 ns up to 60.6 ns.

		24
🐺 Texas Instruments	Making Wireless	

Multi-band OFDM: PLCP Frame Format

PLCP frame format:

- Rates supported: 55, 80, 110, 160, 200, 320, 400, 480 Mb/s.
 Support for 55, 110, and 200 Mb/s is mandatory.
- Preamble + Header = 13.125 ms.
- Burst preamble + Header = 9.375 ms.
- Header is sent at an information data rate of 55 Mb/s.
- Maximum frame payload supported is 4095 bytes.

Multiple Access

- Multiple piconet performance is governed by the bandwidth expansion factor.
- Bandwidth expansion can be achieved using any of the following techniques or combination of techniques:
 - Spreading, Time-frequency interleaving, Coding
 - Ex: Multi-band OFDM obtains its BW expansion by using all 3 techniques.
- Time Frequency Codes:

Channel Number	Preamble Pattern	Mode 1 DEV: 3-band Length 6 TFC						
1	1	1 2 3 1 2						
2	2	1	3	2	1	3	2	
3	3	1	1	2	2	3	3	
4	4	1	1	3	3	2	2	

🔅 Texas Instruments

Making Wireless

PLCP Preamble (1)

- Multi-band OFDM preamble is composed of 3 sections:
 - Packet sync sequence: used for packet detection.
 - Frame sync sequence: used for boundary detection.
 - Channel estimation sequence: used for channel estimation.
- Packet and frame sync sequences are constructed from the same hierarchical sequence.
- Correlators for hierarchical sequences can be implemented efficiently:
 - Low gate count.
 - Extremely low power consumption.
- Sequences are designed to be the most robust portion of the packet.

PLCP Preamble (2)

- In the multiple overlapping piconet case, it is desirable to use different hierarchical preambles for each of the piconets.
- Basic idea: define 4 hierarchical preambles, with low cross-correlation values.
- Preambles are generated by spreading a length 16 sequence by a length 8 sequence.

Preamble Pattern							S	Seque	ence	A									
1	1	1	1	1	-1	-1	1	1	-1	-1	1	-1	1	-1	1	1]		
2	1	-1	-1	-1	-1	-1	1	-1	1	-1	-1	1	1	-1	-1	1]		
3	1	1	-1	-1	-1	1	-1	-1	-1	1	-1	-1	1	-1	1	1]		
4	1	-1	-1	1	-1	1	-1	-1	1	1	-1	-1	-1	-1	-1	1]		
Preamble Pattern					Sequ	ience	в										Spreader		
1	1	-:	1	-1	-1	1		1	-1	1				Seque (lengt	nce A h 16)		$\rightarrow \otimes \longrightarrow$	 Sequence C (length 128) 	
2	1	-:	1	1	1	-1	1	-1	-1	1				, U			1		
3	1	1	L	-1	1	1		-1	-1	-1	L						Sequence B		
4	1	1		1	-1	-1	1	1	-1	-1	L						(length 8)		
																			28
😻 Texas Instrum	ENTS			M	aki	ing	W	ire	les	S									

Link Budget and Receiver Sensitivity

• Assumption: 3-band Device, AWGN, and 0 dBi gain at TX/RX antennas.

Parameter	Value	Value	Value	
Information Data Rate	110 Mb/s	200 Mb/s	480 Mb/s	
Average TX Power	-10.3 dBm	-10.3 dBm	-10.3 dBm	
Total Path Loss	64.2 dB (@ 10 meters)	56.2 dB (@ 4 meters)	50.2 dB (@ 2 meters)	
Average RX Power	-74.5 dBm	-66.5 dBm	-60.5 dBm	
Noise Power Per Bit	-93.6 dBm	-91.0 dBm	-87.2 dBm	
CMOS RX Noise Figure	6.6 dB	6.6 dB	6.6 dB	
Total Noise Power	-87.0 dBm	-84.4 dBm	-80.6 dBm	
Required Eb/N0	4.0 dB	4.7 dB	4.9 dB	
Implementation Loss	Implementation Loss 2.5 dB		3.0 dB	
Link Margin 6.0 dB		10.7 dB	12.2 dB	
RX Sensitivity Level	-80.5 dBm	-77.2 dBm	-72.7 dB	

System Performance (3-band)

 The distance at which the Multi-band OFDM system can achieve a PER of 8% for a 90% link success probability is tabulated below:

Range*	AWGN	LOS: 0 – 4 m CM1	NLOS: 0 – 4 m CM2	NLOS: 4 – 10 m CM3	RMS Delay Spread: 25 ns CM4	
110 Mbps	20.5 m	11.4 m	10.7 m	11.5 m	10.9 m	
200 Mbps	200 Mbps 14.1 m 6.9 m		6.3 m	6.8 m	4.7 m	
480 Mbps	8.9 m	2.9 m	2.6 m	N/A	N/A	

* Includes losses due to front-end filtering, clipping at the DAC, ADC degradation, multi-path degradation, channel estimation, carrier tracking, packet acquisition, etc.

TEXAS INSTRUMENTS

Making Wireless

Signal Robustness/Coexistence

- Assumption: Received signal is 6 dB above sensitivity.
- Values listed below are the required distance or power level needed to obtain a PER \leq 8% for a 1024 byte packet at 110 Mb/s and operating in Band Group #1.

Interferer	Value				
IEEE 802.11b @ 2.4 GHz	$d_{int} \cong 0.2$ meter				
IEEE 802.11a @ 5.3 GHz	$d_{int} \cong 0.2$ meter				
Modulated interferer	SIR \geq -9.0 dB				
Tone interferer	$SIR \ge -7.9 \text{ dB}$				

- Coexistence with IEEE 802.11b and Bluetooth is relatively straightforward because they are out-of-band.
- Multi-band OFDM is also coexistence friendly with both GSM and WCDMA.
 MB-OFDM has the ability to tightly control OOB emissions.

PHY-SAP Throughput

- Assumptions:
 - MPDU (MAC frame body + FCS) length is 1024 bytes.
 - SIFS = 10 ms.
 - MIFS = 2 ms.

Number of frames	Throughput @ 110 Mb/s	Throughput @ 200 Mb/s	Throughput @ 480 Mb/s
1	Mode 1: 83.2 Mb/s	Mode 1: 126.8 Mb/s	Mode 1: 194.9 Mb/s
5	Mode 1: 97.8 Mb/s	Mode 1: 150.5 Mb/s	Mode 1: 257.2 Mb/s

Assumptions:

• MPDU (MAC frame body + FCS) length is 4024 bytes.

Number of frames	Throughput @ 110 Mb/s	Throughput @ 200 Mb/s	Throughput @ 480 Mb/s
1	Mode 1: 101.3 Mb/s	Mode 1: 174.4 Mb/s	Mode 1: 354.9 Mb/s
5	Mode 1: 104.6 Mb/s	Mode 1: 184.6 Mb/s	Mode 1: 399.6 Mb/s

TEXAS INSTRUMENTS

Making Wireless

Complexity

- Unit manufacturing cost (selected information):
 - Process: CMOS 90 nm technology node in 2005.
 - CMOS 90 nm production will be available from all major SC foundries by early 2004.
- Die size for a device operating in Band Group #1:

Process	Complete Analog*	Complete Digital				
90 nm	3.0 mm ²	1.9 mm ²				
130 nm	3.3 mm ²	3.8 mm ²				

* Component area.

• Active CMOS power consumption for a device operating in Band Group #1 :

Process	TX (55 Mb/s)	TX (110, 200 Mb/s)	RX (55 Mb/s)	RX (110 Mb/s)	RX (200 Mb/s)
90 nm	85 mW	128 mW	147 mW	155 mW	169 mW
130 nm	104 mW	156 mW	192 mW	205 mW	227 mW

Comparison of OFDM Technologies

• Qualitative comparison between Multi-band OFDM and IEEE 802.11a OFDM:

Criteria	Multi-band OFDM Strong Advantage	Multi-band OFDM Slight Advantage	Neutral	802.11a Slight Advantage	802.11a Strong Advantage
PA Power Consumption	\checkmark				
ADC Power Consumption	\checkmark^3				
FFT Complexity			\checkmark^1	\checkmark^2	
Viterbi Decoder Complexity				\checkmark	
Band Select Filter Power Consumption		\checkmark			
Band Select Filter Area		\checkmark			
ADC Precision	\checkmark				
Digital Precision		\checkmark			
Phase Noise Requirements	\checkmark				
Sensitivity to Frequency/Timing Errors	\checkmark				
Design of Radio	\checkmark				
Power / Mbps	\checkmark				

1. Assumes a 256-point FFT for IEEE 802.11a device.

2. Assumes a 128-point FFT for IEEE 802.11a device.

3. Even though the Multi-band OFDM ADC runs faster than the IEEE 802.11a ADC, the bit precision requirements are significantly smaller, therefore the Multi-OFDM ADC will consume much less power.

TEXAS INSTRUMENTS

Making Wireless

Multi-band OFDM – Advantages

- Inherent robustness to multi-path in all expected environments.
- Excellent robustness to U-NII and other generic narrowband interference.
- Ability to comply with worldwide regulations:
 - Channels and tones can be turned on/off dynamically to comply with changing regulations.
- Enhanced coexistence with current and future services:
 - Channels and tones can be turned on/off dynamically to coexist with other devices.
- Scalability:
 - More channels can be added as RF technology improves and as capacity requirements increase.
 - Multi-band OFDM is digital heavy. Digital section complexity and power scales with improvements in technology node (Moore's Law).

Conclusion

- The proposed system is specifically designed to be a low power, low complexity CMOS solution.
- Expected range for a device operating in Band Group #1 and transmitting at 110 Mb/s:
 - 20.5 meters in AWGN.
 - Nearly 11 meters in heavy multi-path environments.
- Expected power consumption for a device operating in Band Group #1 and transmitting at 110 Mb/s (90 nm CMOS process):
 - TX = 128 mW
 - RX = 155 mW
 - Deep Sleep = 15 μW
- Multi-band OFDM is coexistence friendly and can complies with worldwide regulations.
- Multi-band OFDM provides the best trade-off among the various system parameters.

TEXAS INSTRUMENTS

Making Wireless

RF/Analog Design Issues for UWB Radio Communications

Ramesh Harjani

Department of Electrical & Computer Engineering University of Minnesota harjani@ece.umn.edu

OFDM	
 Orthogonal Frequency Division Multiplexing (OFDM) Many carriers, each carrying data May add pilot tones used for signal processing May add unused subcarriers Allows space between channels Allows notches in spectrum to avoid interference Time domain signal generated via FFT Data spread over many subcarriers If one carrier is faded, data can still be decoded 	
 Low sensitivity to multipath and tonal interference 	
Spectrum of an OFDM Subcarrier Spectrum of Adjacent OFDM Subcarriers Spectrum of Adjacent OFDM	(Second Se
Analog Design Group, University of Minnesota (harjani@ece.umn.edu)	A LINHASING SC

OFDM - PAPR

Peak-to-average power ratio (PAPR)

- Summation of many modulated carriers
- Central limit theorem predicts normal distribution
- Normal distribution has infinite peak power
- PAPR (dB) = 10 * log10 (number of subcarriers)
 - Theoretically 21 dB for MBOA proposal
- Peak is very rare Not all PAPR needs to be preserved

OFDM - PAPR

- Systems must handle large signals
- Must have noise performance based on smaller average
 - Large dynamic range
- Power Amplifier (PA)

- Must be able to handle large peaks
- Signal handling is set by DC current (linear amplifier)
- DC current usually "wasted"
- Leads to "backoff" specification
 - Ratio of P_{1dB} to average power
 Some signal is still clipped
- PA power consumption is larger than output power suggests
- PA peak voltage is larger than output power suggests

- Error Vector Magnitude
- (N + D + I) to signal ratio
- Due to noise at low input
- Due to phase noise at moderate input
- Due to nonlinearity at high input
- Required back-off set by <u>PAPR</u> and <u>required EVM</u>

MBOA Proposal Fast frequency hopped (FHSS-OFDM) 528 MHz channels Information interleaved across all bands Multipath and interference robustness • 312.5 ns symbol, 9.5 ns guard interval • 3 band (Group A) or 7 band (Group A + C) options Multiple access via hopping sequence **55**, 110, 200 Mbps mandatory, 80, 160, 320, 480 Mbps optional Challenges • Fast frequency hopping – 9.5 ns to switch channel ADC requires >= 5 bits at 528 MHz Wide IF bandwidth > 250 MHz (ZIF) or > 500 MHz (LIF) Amplitude and phase variation partially corrected by equalization Backoff: Claim is that with ZPP no backoff is required 15 Analog Design Group, University of Minnesota (harjani@ece.umn.edu)

Direct Conversion Issues

DC offset

- LO leakage & large interferers
 - Leakage much bigger than signal

 - LO signal large ~about 0dBm Leakage ~10mV, signal level ~30uV
- Can saturate following stages (large gain after LNA 80~100dB)

Flicker (1/F) noise

- Flicker noise corner is inversely proportional to device area 0
- RF devices small to obtain high speed operation
- I/F noise corner ~MHz
- LO pulling
 - Large signal near LO freq will injection pull the internal VCO
- LO re-radiation
 - Radiation from LO (0dBm) to antenna
 - Requirements: -50dbm to -80dBm
 - Harder to meet due to lack of isolation
- I/Q distortion

- I/Q gain and phase harder to do at RF
- Offset can be removed by highpass filtering
 - Possible for modulation schemes that have no signal at carrier
 - Wideband modulation schemes (e.g. DSSS)
 - Large channel bandwidth, small loss in band causes limited ISI

Highpass-Filter for Offset Removal

One sub-carrier removed at DC

- High-pass pole <= 2MHz (4.125MHz/2)
- Process variations ? (R & C vary independently)
- More realistic number is about 1MHz

Carrier stability requirement is 20 ppm per TX/RX

- Carrier frequency offset (CFO) can be >= 400kHz
- Easy to accommodate CFO at 25 degree C
- Increased BER/PER if sub-carrier affected (as for 802.11a/g)

Startup & switching time

- With 1MHz pole, 3 time constants = 477ns
- Offset likely to change when switching channels
- Large slow settling transient
- Also true for startup times (switching between TX/RX)

UWB Mixer Issues

Downconversion Mixer

- Input signal is channel dependent, broadband, bandpass
 - Wideband bandpass load required at LNA
 - Load may be tuned to channel frequency
 - Channel bandwidth must still be accommodated
 - LO frequency depends on channel
 - Bandpass driver requires low Q or tuning
 - Lowpass broadbanding may be suitable
- Output signal is broadband, lowpass
 - Same frequency regardless of channel
 - Lowpass broadbanding techniques suitable for load
 - Capacitance at output detrimental to bandwidth
 - Voltage switching mixer may be unsuitable
- Upconversion mixer faces issues in reverse
 - Channel dependent, broadband, bandpass output signal

Low-Power Ca	rier-Based RF
---------------------	---------------

- General rules
 - Reduce dynamic range requirements
 - Reduce PAPR and required SNDR
 - Lower center frequency, bandwidth, and frequency range

Simplify local oscillator

- Reduce phase noise requirements (reduce required SNDR)
- Increase allowed switching time (slow hopping, if any)
- Simplify up- and down-conversion mixers
- Simplify (or eliminate) ADC and DAC
 - Use analog modulation/demodulation when possible
 - Reduce required resolution (required SNDR)
 - Reduce required speed (signal bandwidth)
- Simplify power amplifier

- Reduce required linearity (PAPR and required SNDR)
- Reduce active duty cycle (TX and RX)

	Requirements: low data rate, low price, very low power	
	~ 200 kbps (simple data) < 10 kbps (wireless sensors atc.)	
	\sim Longer range: $0 = 30 \text{ m} > 100 \text{ m}$ at very low data rate	
	• Very low (or no) battery consumption	
	Soveral months to soveral years solf neworad operating time	
	- 100 uW is approximate limit for energy scavenging (use energy)	
	l ow complexity small form factor appropriate for sensors	
	 Able to handle high noise, high multipath environments 	
	 Precision position determination (10 cm – 1 m accuracy) 	
_ \	NBAN unmanaged dynamic and unpredictable	
	 Devices may be mobile – enter and leave network randomly 	
	 IR-LIWB well suited to intermittent or periodic data bursts 	
	R-UWB may allow for very low power consumption	
	R-UWB also allows for position determination	
	 Inherent feature of IR communication 	
	Little additional power consumption	
	 Due to precise timing required for pulse acquisition 	

Low-Power Impulse Radio

- IR modifies carrier-based low power RF rules
- TX efficiency can be very good
 - Pulse transmission may not require linear PA
 - Discarding LNA and maximizing TX power may be net win
- Usual suspect circuits not needed
 - No PLL or upconversion/downconversion mixer
 - PA may not need to be linear

Major decrease in power consumed by decreased duty cycle

- TX is on only when transmitting a pulse
- RX is on only when expecting a pulse

Redundancy decreases required SNR but increases duty cycle

Too much redundancy may be a net loss

Very accurate timing required

34

35

- Pulses are short: timing error causes missed pulse
- RX duty cycling depends on knowing when pulse is coming
- Position determination accuracy set by timing accuracy

Analog Design Group, University of Minnesota (harjani@ece.umn.edu)

Low-Power IR-UWB for Low-Rate WPAN

Emission limit: -41.3 dBm / MHz, 500 MHz minimum BW

- -14.3 dBm maximum output power at minimum BW
- 38 μW transmitted power
- TX power consumption = TX power * efficiency * duty cycle
- IR-UWB efficiency can be very high, duty cycle very low

"Crystal Radio" detection (rectifier, LPF)

- Filtering is required at RF (or at IF if downconverted)
- Extremely short baseband RX pulses
 - High rate ADC or analog signal processing
 - Proper timing critical to minimize RX on time
- Noise figure can trade-off with range, data rate
 - 15 dB NF + loss not unreasonable (for 75 m indoor system)
 Detailed power/noise budget in IEEE 802.15-03/157r1

 Acknowledgements: work of my graduate students UWB introduction & power considerations: Jackson Harvey Data converters: Shubha Bommalingajahna-pallya 	
Introduction to UWB	
 High-rate WPAN OFDM & MBOA proposal Frequency hopping DSSS XSI/Motorola proposal Circuits for carrier based UWB 	
 Low-rate WPAN Impulse radio based UWB 	
Broadband circuits	

Amount of spectrum occupied	
hy signal	Channel Bandwidth
 Attenuation (absolute or 	
Alternation (absolute of rolative to carrier) must be	
aposified	PSD // from Peak
• FOLUVUB, TU OB BVV > 20%	
or > 500 MHZ	
"Instantaneous" bandwidth	nequency
 BW over short period 	Chappel Bandwidth
 Minimum BW in signal path 	
Total bandwidth	
N times instantaneous BW	
for N channels	
Sets signal noth DW/ if no	
	Total Bandwidth

Broadbanding: Advanced Structures

Broadband	Tuned LNA
 Common-source LNA Pseudo-ladder filter input Input match 3 – 10 GHz Shunt peaked output BW > 10 GHz Power similar to standard narrowband LNA (9 mW) 	
 10 dB power gain Average 5 dB NF over band Problem: many inductors Large area 	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
 Similar to Ismail and Abidi, ISSCC 2004, pp. 384 – 385 & Won Namgoong, PC 	After Bevilacqua and Niknejad, ISSCC 2004, pp. 382 - 383

Analog Design Group, University of Minnesota (harjani@ece.umn.edu)

Antennas for UWB: What to do?

Use inherently broadband antennas with constant phase center

- E.g., biconical dipoles and TEM horns
- Resistively loaded traveling wave-like structure
 - Useful for creating short UWB antennas but sacrifices efficiency
- Co-design antenna and electronics
 - Predistort UWB pulse so radiated field has desired pulse shape
 - Linearize the antenna's phase response using FIR filters
 - Especially useful for frequency independents spirals, etc
 - Requires high sampling rate

- Alternately, do a broadband impedance match with the antenna
 - UC Berkeley (Broderson et. al.)

Data Converters for UWB

- We only focus on ADCs (DACs are a similar but easier)
 - ADC requirements (<< 200mW)
 - MBOA
 - Speed 528MHz
 - Resolution 4 bits [2]
 - DSSS [3]
 - Speed 57MHz/1.368GHz/20GHz depending on architecture
 - Resolution 4 bits
- ADC architectures

59

- 1-bit/clock converters
 - Flash ADC
 - Folding ADC
 - Pipeline ADC
- Interleaved & parallel converters
 - Parallel $\Sigma\Delta$ ADC
 - Interleaved SAR ADC
- Frequency channelized converters

Summary and Conclusions

Two proposals under consideration for IEEE 802.15.3a	
 MBOA: FHSS QPSK OFDM 	
 Good spectral control, multiple bands ease regulatory problem 	ms
 Fast hopping difficult: high power and phase noise 	
 FCC compliance issue is not settled 	
 Many difficulties of OFDM reduced by QPSK constellation 	
 Guard tones allow for proprietary features 	
 Motorola/XSI: DSSS 	
 Spectral control more difficult, only two bands 	
 No frequency hopping – frequency synthesis simplified 	
 Near/far problem only partially mitigated by two bands 	
 TDMA required to solve near/far problem 	
 Complexity very implementation dependent 	
 Can trade off complexity for performance 	

References

- First report and order, revision of part 15 of the commission's rules regarding ultra-wideband transmission systems," FCC, Washington, DC, ET Docket 98-153, 2002
- J. Foerster, E. Green, S. Somayazulu, and D. Leeper, "Ultrawideband technology for short- or medium-range wireless communications," Intel Technology Journal, 2001
- T. M. Cover and J. A. Thomas, Information Theory. New York: Wiley Interscience, 1991 http://www.intel.com/technology/ultrawideband/downloads/Asilomar_2002_final.pdf (Design Challenges for Very High Data Rate UWB Systems)
- IEEE 802.15-03/157r1: Understanding UWB Principles & Implications for Low-Power Communications
- http://www.staccatocommunications.com/papers/ultra-wideband_wireless_systems.pdf (Ultra-wideband Wireless Systems) http://www.staccatocommunications.com/papers/ims1877.pdf (Invited Challenges for Ultra-wideband (UWB) CMOS Integration)
- http://www.ultrawidebandplanet.com/technology/article/0,,10850_3110081,00.html (UWB Splitting Up?) http://www.techonline.com/community/ed_resource/23148 (Ultra-Wideband: It's Not Just Hype)
- http://www.commsdesign.com/story/OEG20030624S0006 (Multiband OFDM: Why it Wins for UWB)
- F. H. Raab, et. al., "Rf and microwave power amplifier and transmitter technologies part 2," High Frequency Electronics, vol. 2, pp. 22–36, July 2003
- M. Albulet, RF Power Amplifier. Atlanta, GA: Noble Publishing Corporation, 2001
- http://www.multibandofdm.org

64

65

- IEEE 802.15.3a Updated MB-OFDM Proposal Specification (03/268r2), Nov 2003
- Multi-Band OFDM Physical Layer Proposal Update (03/449r3), Nov 2003
- UWB Interference Comparison (03/506r0), Nov 2003
- Proposal Response to 802.15.3a No Votes (03/343r1), Sept 2003
- Technical Contribution to IEEE regarding FCC Compliance (03/274r0), May 2003
- http://www.commsdesign.com/story/OEG2003091250019 (FCC defers to standards group on UWB testing) http://www.ultrawidebandplanet.com/technology/article/0,,10850_3103541,00.html (UWB Standards Battle Heats Up) T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits. Cambridge University Press, 1998.
- B. Razavi, RF Microelectronics. Prentice Hall, 1998.
- IEEE 802.15.3a Updated Proposal (03/267r6), Sept 2003
- IEEE 802.15.3a Merger#2 Proposal DS-CDMA (03/334r3), September 2003
- M. Z. Win and R. A. Scholtz, "Impulse radio: How it works," IEEE Comm. Letters, vol. 2, pp. 36–38, February 1998. http://www.eetasia.com/ARTICLES/2003JUN/B/2003JUN16_NTEK_RFD_TA.PDF (The promise of ultrawideband connectivity)
- http://www.npl.co.uk/electromagnetic/rfmff/tech-transfer/freemet/meeting_4/james_page.pdf (Ultra Wide Band (UWB) Compatibility with IMT-2000)
- http://www.multispectral.com/history.html (History of UWB Technology)

Analog Design Group, University of Minnesota (harjani@ece.umn.edu)

References (II)

- http://www.xtremespectrum.com/PDF/Bi-phase_vs_Mono-phase.pdf (Mono-Phase and Bi-Phase Ultra-Wideband)
- http://www.reed-electronics.com/ednmag/contents/images/250832.pdf (Ultrawideband: the next wireless panacea?) IEEE 15-03-0530-03-004a: SG4a Technical Requirements

- IEEE 802.15-03/157r1: Understanding UWB Principles & Implications for Low-Power Communications IEEE 802.15-03/157r1: Understanding UWB Principles & Implications for Low-Power Communications T. H. Lee, *The Design of CMOS Radio Frequency Integrated Circuits*. Cambridge University Press, 1998.
- A. Andersson, C. Svensson, and O. Drugge, "Wideband LNA for a Multiband Wireless Receiver in 0.18 um CMOS," ESSCIRC 2002, pp. 655 658.
- A. Bevilacqua and A. Niknejad, "An Ultra-Wideband CMOS LNA for 3.1 to 10.6 GHz Wireless Receivers," ISSCC 2004, pp. 382 383.
- A. Ismail and A. Abidi, "A 3 to 10 GHz LNA Using Wideband LC-ladder Matching Network," ISSCC 2004, pp. 384 385
- IEEE P802.15 Working Group for Wireless Personal Area [doc IEEE 802.15-04/010r2] : Roberto Aiello, Staccato-Gadi Shor, Wisair, et el, January 2004
- A/D precision requirements for an ultra-wideband radio receiver : Newaskar, P.P.; Blazquez, R.; Chandrakasan, A.R.; Signal Processing Systems, 2002. [SIPS '02]. IEEE Workshop on , 16-18 Oct. 2002; Pages:270 275 IEEE P802.15 Working Group for Wireless Personal Area [doc IEEE 802.15-03/334r3] : Matt Welborn, Michael Mc Laughlin, Ryuji Kohno, et al, September 2003

- A 6b 1.6 Gsample/s flash ADC in 0.18 µm CMOS using averaging termination : Scholtens, P.; Vertregt, M.; Solid-State Circuits Conference, 2002. Digest of Technical Papers. ISSCC. 2002 IEEE International, Volume: 1, 3-7 Feb. 2002 Pages:168 457 vol.1 A dual-mode 700-Msamples/s 6-bit 200-Msamples/s 7-bit A/D converter in a 0.25-µm digital CMOS process: Nagaraj, K.; Martin, D.A.; Wolfe, M.; Chattopadhyay, R.; Pavan, S.; Cancio, J.; Viswanathan, T.R.; Solid-State Circuits, IEEE Journal of , Volume: 35, Issue: 12, Dec. 2000 Pages:1760 1768
- A 7b 450MSample/s 50mW CMOS ADC in 0.3mm2 : Sushihara, K.; Matsuzawa, A.; Solid-State Circuits Conference, 2002. Digest of Technical Papers. ISSCC. 2002 IEEE International , Volume: 1, 3-7 Feb. 2002 Pages:170 457 vol.1
- A 1.8V 1.6Gsps 8b Self-Calibrating Folding ADC with 7.26ENOB at Nyquist Frequency : Taft. R., Tursi M. R., Hidiri O., Pons V., ISSCC 2004.
- An 8b 600Msps 200mW CMOS Folding ADC using an Amplifier Preset Technique : Geelen G., Paulus E., ISSCC 2004.
- A 6b 600MHz 10mW ADC Array in digital 90nm CMOS : Draxelmayr, D.; ISSCC 2004.
- A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification :Murmann, B.; Boser, B.E.; Solid-State Circuits, IEEE Journal of , Volume: 38 , Issue: 12 , Dec. 2003 Pages:2040 2050
- A 20 GS/s 8 b ADC with a 1 MB memory in 0.18 /spl mu/m CMOS : Poulton, K.; Neff, R.; Setterberg, B.; Wuppermann, B.; Kopley, T.; Jewett, R.; Pernillo, J.; Tan, C.; Montijo, A.; Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International , 2003 Pages:318 496 vol.1
- A Comparative Analysis of Parallel Delta–Sigma ADC Architectures : Eshraghi, A.; Fiez, T.S.; Circuits and Systems I: Regular Papers, IEEE Transactions on, Volume: 51 , Issue: 3 , March 2004 Pages:450 458
- W. Namgoong, "A Channelized Digital Ultra-Wideband Receiver", IEEE Transactions on Wireless Communication, vol. 2, May 2003, pp. 502-

Analog Design Group, University of Minnesota (harjani@ece.umn.edu)

Multirate and Subband Signal Processing in Ultrawideband Communications

A. H. Tewfik

Electrical and Computer Engineering Department University of Minnesota

- Introduction
- Multirate techniques in UWB system design
- Subband techniques in UWB ranging
- Subband approaches in ADC
- Conclusion

- Introduction
 - Unified view of UWB systems

UWB Communications

- Ultra-wideband communications
 - Fractional bandwidth (BW/fc) > 25%
 - BW > 1.5 GHz
- New FCC regulations
 - 3.1 GHz 10.6 GHz band
 - Part 15 applies
 - Contiguous BW > 500 MHz

Coupling between time resolution, s(t) and duty cycle

Spectrum Spreading in UWB

- Different Types of UWB according to frequency Spreading :
 - TM-UWB: (Spreading by Time Hopping)
 - DS-UWB: (Spreading by Direct Sequence)
 - FH-UWB: (Spreading by Frequency Hopping)
- Compound Systems

$$p(t) = \sum_{n=0}^{N-1} s(t - nT - c_n T_c)$$
$$p(t) = \sum_{n=0}^{N-1} c_n s(t - nT)$$
$$p(t) = \sum_{n=0}^{N-1} s(t - nT) e^{-j\frac{2\pi c_n t}{T_c}}$$

- Paths with delay difference of multiple of T_c/N are resolvable. (resolution ~ 100-500 psec)

Multipath Resolution

Multipath Interference determined by time resolution

T_c/N:

$$X_{p}^{(1)}(\tau_{1} - \tau_{2}, 0) = \frac{\sin(N\pi(\tau_{1} - \tau_{2})/T_{c})}{\sin(\pi(\tau_{1} - \tau_{2})/T_{c})} \times X_{s}(\tau_{1} - \tau_{2}, 0)$$
• Paths with delay
difference of multiple
of T_c/N are resolvable:

$$X_{p}^{(1)}(\tau_{1} - \tau_{2}, 0) = N\delta_{\tau_{1} - \tau_{2}}$$

Single and Multi-Channel Receiver

- If N is Large (N>100) then Signal to Interference ratio is large (S/I>10db) or no frequency hopping is used
- If N is small (N<100) then Signal to Interference ratio is low (S/I<10db)

Multi Channel Detectors

- Introduction
- Multirate techniques in UWB system design
 - WPANs
 - Multiband OFDM
 - Pulsed Multiband OFDM
 - Outage Capacity
 - Performance, Complexity and Power Consumption Comparison

Source: Chew et al, UC Berkeley

IEEE 802.15.3a Technical Requirements

- 110 Mbps @ 10 meters, 200 Mbps @ 4 meters
 - 8% PER for 1024 octet frames
- 4 piconet co-operation in close proximity
 - Minor degradation allowed
- Coexistence and Interference Rejection
 - Both required for usual list of IEEE802 PHYs
- Power Consumption
 - 100 mW at 110 Mbps
 - 250 mW at 200 Mbps
 - Power Save
- Emphasis on QoS Corrected error rate of 10⁻⁹
- Cost and complexity are concern

after: Time Domain

Introduction

Multirate techniques in UWB system design

- WPANs
- Multiband OFDM
- Pulsed Multiband OFDM
- Outage Capacity
- Performance, Complexity and Power Consumption Comparison

Multi-band OFDM system

- 100 bits of coded data per symbol
- frequency spreading of factor 2 by symmetric conjugate
- Convolutional code of rate 11/32 and 11/16 for rates 110 and 220 Mb/s

- Architecture similar to *conventional* OFDM system.
- For a given superframe, the time-frequency code is specified in the beacon by the PNC.

MB-OFDM

 Fills spectrum with larger number of carriers and short pulses

 Exploits diversity mainly via heavy coding, interleaving and band hopping, no Rake receiver

"Other" Common UWB Systems

 Spread spectrum using DSS, TH or FH, possibly in addition to pulsation

 Exploit diversity mainly via Rake reception

Introduction

Multirate techniques in UWB system design

- WPANs
- Multiband OFDM
- Pulsed Multiband OFDM
- Outage Capacity
- Performance, Complexity and Power Consumption Comparison

- Pulsed OFDM can be generated by:
 - Reducing rate of baseband section and,
 - either replacing DAC with pulse train generator
 - Or upsampling signal after IFFT and using normal DAC

Multi-band Pulsed-OFDM system

- Transmit Pulsed-OFDM modulated signals in each sub-band
- Number of Carriers = 32
- Multipath fading eliminated by:
 - Inherited diversity gain by pulsating
 - Light coding and interleaving: Convolutional code of rate 2/3

Pulsed-OFDM Analysis with digital model

K diversity branch

- K FFT to demodulate each branch
- Diversity combining with MRC, equal gain or selective combining
- No rake receiver!

Exploiting Diversity in Pulsed OFDM

- Diversity combining
 - MRC, equal gain, selective or generalized selective
 - MRC and equal gain require sampling rate equal to symbol bandwidth
 - Selective combining uses a sampling rate = symbol bandwidth/K
 - Complexity and power savings not obvious since it requires more stringent timing synchronization and drift correction

Introduction

Multirate techniques in UWB system design

- WPANs
- Multiband OFDM
- Pulsed Multiband OFDM
- Outage Capacity
- Performance, Complexity and Power Consumption Comparison

- Optimum upsampling rate K depends on:
 - Channel characteristics
 - Coding and interleaving scheme
- To have an algorithm regardless of coding and modulation:
 - Define K_{opt} as the one that maximize Capacity
 - For a fading channel we use capacity versus outage probability

Capacity of AWGN channel:

$$C = w \ln(1 + \gamma)$$

In fading channel capacity is a random variable:

$$p_{\gamma}(\gamma) = \frac{1}{\overline{\gamma}} \exp\left(-\frac{\gamma}{\overline{\gamma}}\right)$$

 Outage probability is the probability that instantaneous capacity is less than a rate R:

$$P_{out} = \Pr(C(\gamma) < R).$$

- *q* outage capacity C_q of a fading channel is equal to the maximum rate *R*, such that the outage probability is less than *q*.
 - Example: C_{1%} is the rate corresponding to an outage probability of less than 1%
- q can be interpret as a measure of the complexity needed for a system to reach the outage capacity
 - Example: The rate of C_{1%} can be achieved with less complexity than C_{5%}

Outage Capacity of pulsed-OFDM system in Rayleigh Fading

The Pulsed OFDM divides the whole bandwidth w to K parallel channels, then:

instantaneous capacity

$$C(\gamma) = \frac{w}{K} \ln(1 + \gamma^{(K)}).$$

SNR of K-folded diversity

For Rayleigh channels with MRC combining:

$$p_{\gamma}^{(K)}(\gamma) = \frac{1}{\overline{\gamma}(K-1)!} \left(\frac{\gamma}{\overline{\gamma}}\right)^{K-1} \exp\left(-\frac{\gamma}{\overline{\gamma}}\right).$$

Outage probability

$$P_{out} = \Pr\left(C(\gamma) < R\right) = \Pr\left(\frac{w}{K}\ln(1+\gamma^{(K)}) < R\right) = \Pr\left(\gamma^{(K)} < \left(e^{K\frac{R}{w}} - 1\right)\right)$$

Maximum upsampling rate

the diversity branches should be uncorrelated then:

$$K_{\max} = \lfloor w / B_c \rfloor = \lfloor w T_{spread} \rfloor$$

Coherence Bandwidth of channel

 K_{opt} defines as the one that maximize outage Capacity for a given outage probability

 Determine the maximum possible upsampling rate:

$$K_{\max} = \lfloor w / B_c \rfloor = \lfloor w T_{spread} \rfloor$$

- Choose an outage probability *q* as optimality criterion according for a target complexity.
- plot the capacity versus SNR curves for K=1,...K_{max}.
- For a given SNR, or SNR range, choose the K that provides maximum outage capacity.

Introduction

Multirate techniques in UWB system design

- WPANs
- Multiband OFDM
- Pulsed Multiband OFDM
- Outage Capacity
- Performance, Complexity and Power Consumption Comparison

- Exploit added diversity to reduce system complexity
- Setting for IEEE 802.15.3a
 - W=528 MHZ (same band plan as MB-OFDM)
 - Number of sub-carriers=32
 - Different duty cycle is used different rates:
 - 1/4 for 110Mbits/s (K=4)
 - 1/3 for 165 Mbits/s (K=3)
 - ½ for 220 Mbits/s (K=2)
 - I for 440 Mbits/s (K=1)
 - Convolutional Coding rate 2/3

Complexity Comparison: Transmitter IFFT Constellation Convolutional Input Insert Pilots DAC Interleaver Encoder Mapping Data Add CP & GI $\exp(j2\pi f_c t)$ Frequency Hopping Coder IFFT DAC RF **MB-OFDM** Rate 11/32 128-point normal Punctured from 1/3 **MB-POFDM** Rate 2/3 32-point Pulse generator Punctured from 1/2 Pulsed is ??? Complexity same same simpler

Power Consumption Comparison:

Power Consumption ~ Processing clock rate

	Input data	After Coding with Puncturing	After Puncturing	After constellation mapping	Output of IFFT	Input to FFT	Input to Decoder
Non- pulse	110 MHz	330MHz	320 MHz	160 MHz	320MHz	320MHz	320MHz
Pulsed	110 MHz	220MHz	160 MHz	80 MHz	80MHz	320MHz	160MHz

Clock rate in different parts of Transceiver

- Introduction
- Multirate techniques in UWB system design
- Subband techniques in UWB ranging
 - Ranging techniques
 - FFT range resolution enhancement
 - Range resolution enhancement with multirate virtual signal synthesis

Applications of Ranging Ability in Wireless personal Area networks

- Finding People
 - Situational Awareness for Soldiers
 - Firefighter Rescue
- Finding Assets
 - Autonomous Manifesting
 - ISO Container Security
- Machine-to-Machine (M2M)
 - Wireless Sensor Networks
 - Home/Office Automation
 - Robotics

*Patrick Houghton, Aetherwire & Location

The variance of estimation error in AWGN*:

$$\operatorname{var}(\hat{\tau}) \ge 1 / \left[(E_s / 2N_0) . w^2 \right]$$

- Es : The signal energy
- N0/2: The AWGN density
- *w* : The mean square bandwidth of signal
- Time resolution ~ *1/bandwidth*

*S. M. Kay, *Fundamentals of Statistical Signal Processing, volume I: Estimation Theory*, Prentice Hall PTR, 1st edition, March 26, 1993

- UWB OFDM system for the IEEE 802.15.3a wireless personal area networks
- Multi-band system divides whole UWB bandwidth into 14 subbands
- At a given time only a single sub-band is used to transmit data

Two equations in two unknowns yield:

$$t_{p} = \frac{1}{2} \left[\left(T_{2AR} - T_{1AT} \right) - \left(T_{2BT} - T_{1BR} \right) \right] t_{o} = \frac{1}{2} \left[\left(T_{2BT} + T_{1BR} \right) - \left(T_{2AR} + T_{1AT} \right) \right]$$

* US Naval Observatory, *Telstar* Satellite, circa 1962 http://www.boulder.nist.gov/timefreq/time/twoway.htm Unmatched detect-delays in the two devices may require one-time offset calibration.

- Introduction
- Multirate techniques in UWB system design
- Subband techniques in UWB ranging
 - Ranging techniques
 - FFT range resolution enhancement
 - Range resolution enhancement with multirate virtual signal synthesis

Improved Time Resolution Through Multiple Reception

- Assume a multi-band system with N sub-band each with bandwidth w:
 - Transmit identical high time resolution sequence on N bands
 - A coarse resolution of 1/W is achieved in each sub-band by processing returns through matched filters

Traditional Scheme: Average estimates from different bands to get resolution equal to $(1/\sqrt{N} \text{ w})$

f

S(t)

t

S(t)

S(t)

 Run N point FFT at each range bin across returns from different bands to get fine resolution equal to (1/(Nw) = 1/Total BW)

FFT method: Theory

- Transmitted signal in nth band : $s(t) e^{j\omega} \sigma^{nt}$
- Received signal in nth band: $s(t-\tau_0) e^{i\omega} o^{\eta(t-\tau_0)}$
- Output of baseband matched filter (after demodulation): e^{jω} σ^{ητ}_θ R_s(τ -τ_θ)
 R_s(t) = discrete time autocorrelation of s(t)
- Absolute value of FFT-range map:

 $\frac{\left|\sin(\omega_{0}(\tau-\tau_{0})N/2)\right|}{\left|\sin(\omega_{0}(\tau-\tau_{0})/2)\right|} \underbrace{R_{s}(\tau-\tau_{0})}_{coarse, resolution}$ coarse resolution along axis1 fine resolution along FFT axis2

- Variance of normalized error versus SNR for both averaging and FFT schemes
- Number of sub-bands N=4
- Ranging signal: PN sequence in Preamble of Multi-band OFDM system

- Variance of normalized error versus SNR for FFT scheme with and without phase mismatch between sub-bands
- Number of sub-bands N=4
- Ranging signal: PN sequence in Preamble of Multi-band OFDM system

- Introduction
- Multirate techniques in UWB system design

Subband techniques in UWB ranging

- Ranging techniques
- FFT range resolution enhancement
- Range resolution enhancement with multirate virtual signal synthesis

Subband ranging

- Take a PN sequence of length (N*M) and make a wavelet decomposition to get N subsequences of length M
- Send each sub-sequence in one sub-band and combine the received signals using a complete reconstruction filter bank
- Correlate the output of filter bank with original signal

Noise effect and resource allocation

- With limited number of time-frequency slots available, should we
 - Use the same signal and average over the estimations to reduce the effect of noise?

Use wavelet methods to increase the overall bandwidth and resolution?

 $s_1(t) \ s_2(t) \ s_3(t) \ s_4(t) \ s_5(t)$

• The variance of estimation error in AWGN with density $N_0/2$ is equal to:

$$\operatorname{var}(\hat{\tau}) \ge 1 / \left[(E_s / 2N_0) w^2 \right]$$

The energy of the shaping pulse

The mean square bandwidth of signal

• with signal of bandwidth *w* and averaging N times:

 $\operatorname{var}(\hat{\tau}_{ave}) = \operatorname{var}(\hat{\tau}_{w}) / N$

with signal of overall bandwidth Nw:

 $\operatorname{var}(\hat{\tau}_{Nw}) = \operatorname{var}(\hat{\tau}_{w}) / N^{2}$

- Variance of normalized error versus SNR for both averaging and subband schemes
- Number of sub-bands N=3
- Ranging signal: PN sequence in Preamble of Multi-band OFDM system

- Variance of normalized error versus SNR for subband scheme in fading channels
- Number of sub-bands N=3
- Ranging signal: PN sequence in Preamble of Multi-band OFDM system

- Multirate techniques in UWB system design
- Subband techniques in UWB ranging
- Subband approaches in ADC

- ADC sees the full bandwidth of the input signal.
 - Sample/hold circuitry becomes difficult to design.
 - Sensitive to sampling jitter.
- Large dynamic range required in the presence of narrowband interferers.

Frequency Channelized ADC Using Lowpass Filters

- Same number of ADCs (critically sampled).
- ADC input bandwidth reduced.
 - Sample/hold circuitry relaxed.
 - More robust to sampling jitter.
- Reduced dynamic range requirement.
- Sampling jitter and mixer phase noise present.

Effect of Filter Order with Narrowband Interferer Present

Oversampled Channelized Receiver in Transmitted Reference System

- Transmit a block of data modulated pulses.
 - First N pulses are used for training.

Training symbols

- Estimate matched filter response by averaging first N training pulses.
- Use this estimate to correlate and detect transmitted data.
- Use oversampled channelized receiver.
 - ADC samples at a slightly higher rate (~30%) than the minimum necessary.

Oversampled Channelized Receiver I

- For perfect reconstruction (PR) filter bank, matched filter is timereversed complex conjugate of propagation channel pulse response.
- For power complementary analysis filters (ie, $\sum |H_m(\omega)|^2 = c$), PR synthesis filter is time-reversed complex conjugate of analysis filter.
- \rightarrow Synthesis and matched filters can be combined.

Oversampled Channelized Receiver II

- Power complementary analysis filters realized digitally after ADC.
- Optimal detection obtained by correlating each subband independently.
- Convergence speed slightly faster than full band receiver.

- Multirate UWB system design techniques offer and advantageous trade-off between complexity and performance
- Subband approaches lead to efficient ranging procedures with an accuracy equal to that of systems working with a much larger bandwidth
- Novel subband A/D designs potentially attractive in UWB systems

Selected References

Unified UWB and multirate approaches in system design

- "An interference suppressing OFDM system for ultra wideband width radio channels," D. Gerakoulis and P. Salmi, *IEEE Conference on Ultra Wideband Systems and Technologies (UWBST'02*), May 2002.
- "Synchronous UWB-OFDM," Ebrahim Saberinia and A. H. Tewfik, *IEEE* International Symposium on Advances in Wireless Communications, Victoria, BC, Canada, September 2002.
- "High Bit Rate Ultrawideband OFDM," E. Saberinia and Ahmed H. Tewfik, Proc. of the 2002 IEEE Global Telecommunications Conf. (Globecom), Taipei, Taiwan, November 2002.
- "Multi-band OFDM: merged proposal #1," Merged proposal for the IEEE 802.15.3a standard, Anuj Batra at al, *IEEE 802.15 work group official web site*, <u>http://grouper.ieee.org/groups/802/15/pub/2003/ Jul03/</u>, San Francisco, CA, USA, July 2003.
- ``Multi-carrier ultra-wideband multiple-access with good resilience against multiuser interference," Z. Wang.in *Proc. of 37th Conf. on Info. Sciences and Systems*, Johns Hopkins University, March 2003."

Unified UWB and multirate approaches in system design

- "Single and Multi-carrier UWB Communications," E. Saberinia and Ahmed H. Tewfik, Proc. of the Seventh International Symposium on Signal Processing and Its Applications, Paris, France, July 2003.
- "Analog To Digital Converter Resolution Of Multi-Band OFDM And Pulsed-OFDM Ultra Wideband Systems," E. Saberinia, A. Tewfik, K.-C. Chang and G. Sobelman, *First IEEE-EURASIP International Symposium on Control, Communications and Signal Processing*, Hammamet, Tunisia, March 2004.
- "Pulsed OFDM modulation for Ultra wideband Communications," E. Saberinia, A. Tewfik, J. Tang and K. Parhi, 2004 IEEE Int. Symp. On Circuits and Systems (ISCAS'04), Vancouver, B.C., Canada, May 2004.
- "Outage Capacity of Pulsed-OFDM Ultra wideband Communications," E. Saberinia, A. Tewfik, J. Tang and K. Parhi, 2004 Joint UWBST & IWUWBS, Kyoto, Japan, May 2004.
- "Design and Implementation of Multi-band Pulsed-OFDM System for Wireless Personal Area Networks," E. Saberinia and A. Tewfik, 2004 IEEE Int. Conf. on Comm. (ICC'04), Paris, France, June 2004.

- Subband techniques in UWB ranging
 - "Ranging in Multi-band Communication Systems," E.
 Saberinia and Ahmed H. Tewfik, *Proc. of the IEEE 2004 Spring Vehicular Technology Conference,* Milan, Italy, May 2004.
 - "Enhanced Time Resolution In Band Limitted Communication Systems," E. Saberinia and Ahmed H. Tewfik, XII European Signal Proc. Conf. (EUSIPCO2004), Vienna, Austria, September 2004. (updated pre-print also available)

- Unified UWB and multirate approaches in system design
- Subband approach to UWB ADC
 - W. Namgoong, "A Channelized Digital Ultra-Wideband Receiver", *IEEE Transactions on Wireless Communication*, vol. 2, May 2003, pp. 502-510.
 - L. Feng, W. Namgoong, "An Oversampled Channelized Ultra-Wideband Receiver", IEEE Ultra Wideband Systems and Technologies, May 2004, Kyoto, Japan.

Multi-Band OFDM UWB RF System Issues

Lawrence Larson, Daniel Li, Mahim Ranjan UCSD Center for Wireless Communications

larson@ece.ucsd.edu

RADIO

Outline

- Introduction to UWB
- UWB Transmitter Design
 - I/Q mismatch in UWB transmitter
 - LO impurity in UWB transmitter
 - LO Leakage in UWB transmitter
- UWB Receiver Design
 - System Specs.
 - LNA Design
 - Mixer Design
- Future Work

Introduction to UWB

- UWB uses unlicensed 3.1 –10.6GHz band
- Provides a wireless PAN with data payload communication capabilities of 55, 80, 110, 160, 200, 320, and 480 Mb/s.
- We follow the TI and Intel proposal Multi-band OFDM System proposal
- OFDM advantages:
 - OFDM has been adopted for several technologies
 - OFDM is spectrally efficient.
 - Good performance in narrowband interference.
 - Robustness in multi-path environments.

Introduction to UWB

• Scrambler uses Pseudo random binary sequence generator $g(D)=1+D^{14}+D^{15}$

 $S_n = I_n \oplus x_n$ Where S_n, I_n are the output & input of the scrambler, $x_n = x_{n-14} \oplus x_{n-15}$ x_n is the random binary sequence

• Convolutional Encoder provides Forward Error Correction (FEC)

Introduction to UWB

- Multi-band OFDM TX Architecture (continued):
 - Puncturer:
 - A procedure of omitting some of the encoded bits
 - Reduce total number of bits transmitted
 - Increase the coding rate (from 1/3) to 11/32, ½, 5/8, ¾, etc
 - Interleaving: An efficient method against burst errors
 - Symbol interleaving: Permutes the bits across OFDM symbols for frequency diversity
 - Tone interleaving: Bits across tones in one symbol for robustness against narrow-band interference

• QPSK mapping: 2 bits map to a complex number , a tone of OFDM symbol

Introduction to UWB

• Multi-band OFDM TX Architecture (continued):

- •128 tones per OFDM symbol
 - •100 Information tones (or 50 independent tones use 100 position for freq. Spreading)
 - •12 Pilot Tones for coherent detection against freq. offset and phase noise
 - •10 Guard tones, relax filters design or other purpose

IFFT: Convert 128 tones to 128 time-domain samples
Add zero-pad prefix (60.6ns=32 sample time) to remove PSD ripple
and 5 sample time guard intervals for switch between bands

Introduction to UWB

- •Mode 1 device use Group A
- •Mode 2 device uses Group A and Group C
- •Group B and D are reserved for future

Multi-Band OFDM System Parameters*

Info. Data Rate	110 Mbps	200 Mbps	480 Mbps	
Modulation/Constellation	OFDM/QPSK	OFDM/QPSK	OFDM/QPSK	
FFT Size	128	128	128	
Coding Rate (K=7)	R = 11/32	R = 5/8	R = 3/4	
Spreading Rate	2	2	1	
Information Tones	50	50	100	
Data Tones	100	100	100	
Info. Length	242.4 ns	242.4 ns	242.4 ns	
Cyclic Prefix	60.6 ns	60.6 ns	60.6 ns	
Guard Interval	9.5 ns	9.5 ns	9.5 ns	
Symbol Length	312.5 ns	312.5 ns	312.5 ns	
Channel Bit Rate	640 Mbps	640 Mbps	640 Mbps	
Frequency Band	3168 – 4752 MHz	3168 – 4752 MHz	3168 – 4752 MHz	
Multi-path Tolerance	60.6 ns	60.6 ns	60.6 ns	

* From TI proposal

UWB Transmitter Simulation

A snapshot:

UWB System Simulation

•Goal: Make the simulation as realistic as possible •Current Model Assumptions

- Random data transmission (no data scrambling used)
- Fixed (selectable) number of data symbols per packet
- Continuous frame-to-frame operation (no coder state resetting via tail bits)
- Fixed transmit power level; link-SNR specified, No PA
- Assume perfect receiver, Idealized timing/frequency acquisition
- •Only simulate the highest mandatory rate 200Mbps

• The following non-idealities are introduced to the simulation

I/Q mismatch
 LO impurity

 Spurs
 Phase noise

 LO leakage

IQ imbalance in UWB transmitter

IQ imbalance in QPSK system (no OFDM)

IQ imbalance in UWB transmitter

IQ magnitude imbalance test results for UWB:

Channel mode: CM2, non-line of sight, distance 0-4m Channel index: 50 I/Q imbalance is defined as 20*log10(I/(I-Q))

BER is determined by channel SNR when IQ imbalance is above 20dB
IQ imbalance starts to affect BER when less than 20dB

LO impurity in UWB Transmitter

LO from frequency synthesizer comes with Spurs and phase noise

Non-ideal LO effect in the Mixer:

LO impurity in UWB Transmitter

Simulation of LO impurity impact on UWB transmitter

• Two cases: A: Spurs at 0.98*fc & 1.02*fc B: Spurs at 0.9*fc & 1.1*fc

Channel mode: non-line-of-sight, distance 0-4m, Channel index: 50

•LO Spurs has little impact on BER when less than –20dB

•The closer the spurs to LO, the more impact it has

LO Leakage in UWB Transmitter

LO leakage causes:

- DC offset at receiver
- Interference to other receivers using the same band

LO Leakage in UWB Transmitter

Simulation of LO Leakage on UWB transmitter

- LO Leakage magnitude is specified in dB w.r.t. LO magnitude
- · Channel mode: non-line-of-sight, distance 0-4m,
- Channel index:50

Multi-Band OFDM Receiver Architecture*

• Block diagram of an example RX architecture:

* From TI Proposal

Link Budget and Receiver Sensitivity*

 Assumption: AWGN and 0 dBi gain at TX and RX antennas.

Parameter	Value	Value	Value
Information Data Rate	110 Mb/s	200 Mb/s	480 Mb/s
Average TX Power	-10.3 dBm	-10.3 dBm	-10.3 dBm
Total Path Loss	64.2 dB (@ 10 meters)	56.2 dB (@ 4 meters)	50.2 dB (@ 2 meters)
Average RX Power	-74.5 dBm	-66.5 dBm	-60.5 dBm
Noise Power Per Bit	-93.6 dBm	-91.0 dBm	-87.2 dBm
RX Noise Figure	6.6 dB	6.6 dB	6.6 dB
Total Noise Power	-87.0 dBm	-84.4 dBm	-80.6 dBm
Required Eb/N0	4.0 dB	4.7 dB	4.9 dB
Implementation Loss	3.0 dB	3.0 dB	3.0 dB
Link Margin	5.5 dB	10.2 dB	12.2 dB
RX Sensitivity Level	-80.0 dBm	-76.7 dBm	-72.7 dB

Key Block Specifications

	NF (dB)	Gain (dB)	IIP3 (dBm)	
LNA	4	10	-2	
Mixer	10	6	10	
Filter	10	0	18	

Assumptions:

- Min distance of operation = 0.1m
- Maximum of three UWB systems operating concurrently

• External Notch filter filters out non-Multi-Band OFDM jammers (802.11a/b/g, Bluetooth, PCS etc)

Other Considerations

- DC Offset: Important for direct conversion systems: Multi-Band OFDM system rejects the sub-carrier at DC.
- **1/f noise:** Sub-carrier at DC is rejected, subcarrier spacing = 4.125 MHz which is far away from the 1/f noise corner frequency. Impact of 1/f noise is low.
- IIP2: Completely differential design to increase IIP2
- LO Re-radiation: Use cascode LNA to improve isolation and reduce carrier leakage

Paths to Broadband LNA

Resistive Load, Resistive Input Match

- Good Broadband Gain and Input Match
- High Noise Figure
- Headroom

• LC Match

- Broadband match possible using multiple LC sections
- Good noise performance
- Requires on-chip inductors for tuning: High cost

Design Methodology

Load Tuning

• LC Tune LNA load for 6GHz-8GHz band using package bondwire inductance and on-chip capacitors

• Switch in extra capacitance to tune to 3GHz-4.5GHz band

Allows for a broad-band load without the use of resistors or on-chip inductors. Fixed LC tuning would require multiple LC sections and therefore on-chip inductors

Input match

- Use package bondwires to match input
- Add RC feedback

• Size devices for best input match (as opposed to sizing for best NF): Increases NF, but allows for input matching without on-chip inductors

Load tuning also provides extra filtering and eases IP2 spec on mixer

Simulation Results - I

Freq	Gain	NF	Return Loss	
MHz	dB	dB	dB	
3432	11	3.25	-4.6	
3960	11.8	3.3	-4.9	
4488	14	3.4	-5.2	
6336	18.53	3.4	-5.9	
6864	21	3.5	-6.1	
7392	21.9	3.65	-5.9	
7920	20.8	3.8	-5.4	

10 dB gain step between bands. VGA will need to compensate.

Noise Figure	3.8dB (worst case)
Input IP3	-3 dBm
Input IP2	+40 dBm with 5% device mismatch +30 dBm with 5% device mismatch AND 10% bondwire mismatch
Current Consumption	8mA (from a 2.7V supply)
Frequency band switching time	3nS

Mixer

Simulation Results

- Noise Figure = 7dB
- *Gain* = 6dB
- Current Consumption = 4mA (from a 2.7V supply)

Gilbert cell mixer with resistive loads and degeneration

V_{DD}

+

Mixer Spur Performance

• IIP2 quantifies "wide-band" distortion".

Ex.: Fspur=4.1GHz, Finterest=8.2GHz, Flo=8GHz then Finterest_OUT=200MHz 2XFspur - Flo=200MHz !!

LNA is frequency selective (Gain at 4.1GHz is different from gain at 8.2GHz). IIP2 for mixer not a true figure of merit for the system as it assumes the gain for 4.1GHz is the same as that for 8.2GHz.

Mixer Spur Simulation Strategy

- Simulate Mixer+LNA
- Inject Minimum Detectable Signal at input of LNA at freq of interest
- Inject spur(s) which would create a signal close to frequency of interest
- Make sure the spur output is at least 10dB below signal of interest

LNA+Mixer Spur Results

RF signal power = -73dBm, Spur power = -30dBm

5% device mismatch, 10% bondwire mismatch

Signal of interest	Spur	LO	Mixing Product	Fout Spur	Fout interest	Spur Rejection (dBc)	Spur Rej LNA with Resistive Loads
8.1G	4.1G	8G	2.Fspur-Flo	200M	100M	17.2	10.1
4.1G	8.2G	4G	Fspur-2.Flo	200M	100M	4	0
7.1G	4.1G, 3.1G	7G	Fspur1+Fspur 2-Flo	200M	100M	14.5	8.6

Filter Specification

- Need a low pass filter to filter out adjacent channels from other UWB systems
- Required adjacent channel suppression > 30dB (500MHz from center frequency) => at least 4th order LPF
- Minimum noise contribution
- No inductors

Filter Topologies

Currently investigating different filter topologies

• Sallen-Key filter with unity gain buffer

• Gm-C filter

Sallen-Key Filter

- Low current
- No inductors
- Good noise performance
- Low complexity

• Finite Zout of source follower introduces a zero which limits rejection (particularly problematic for MOS due to low Gm)

$$H(s) = \frac{K}{s^2 C_1 C_2 R_1 R_2 + s [C_1 (R_1 + R_2) + C_2 R_1 (1 - K)] + 1}$$

H(s) =

 $\frac{s^2 C_1 C_2 R_2 r_o + s C_2 r_o + K}{s^2 [C_1 C_2 R_1 R_2 + C_1 C_2 r_o + (R_1 + R_2)] + s [C_1 (R_1 + R_2) + C_2 (r_o + (1 - K)R_1)] + 1}$ Finite

Finite output impedance

Zero output impedance

Techniques for Enhancing Rejection of Sallen-Key

• Extra buffer "isolates" source follower Zout and pushes the zero to a higher frequency

· Band-width could be reduced due to limited band-width of extra buffer

2 Pole Sallen-Key Filter Response: Preliminary Simulation Results

 ~17dB improvement in rejection at 2GHz by using extra buffer

 ~10 dB rejection of adjacent band with extra buffer

Bandwidth reduced due to finite bandwidth of buffer

Still To Evaluate

Noise Performance

- Input IP3
- Group Delay

Conclusions

- UWB Multi-Band OFDM offers significant data rate enhancements over existing 802.11 systems.
 - What is the performance?
 - What is the cost?
 - What are the markets?
- TBD!!!