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Molecular Memory Device Status & Molecular Memory Device Status & 
MechanismsMechanisms

Modulated tunnel diode

Filament formation and opening

Coulomb barrier formation and removal

Electrochemistry-assisted capacitor
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Tunnel DiodeTunnel Diode

Metal-molecule-metal forms a 
tunnel diode
Tunnel barriers modified via:

Van-der-Waal’s (electrostatic) 
interactions with neighbors

◊ Interpreted from probe data
Covalent bond change (e.g. Redox)

◊ Theoretical & Indirect evidence (Heath, 
others)

Mechanical change
◊ Theoretical & indirect evidence 

(Stoddard, others)
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Tunnel Diode Verification Tunnel Diode Verification 
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MultiMulti--State Tunnel Diode?State Tunnel Diode?

With REDOX centers:

Li. et.al, APL 82(4), 2003
(NASA, UCLA, Rice)
(used in ITRS 03)
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NanoFilamentsNanoFilaments
Williams, Stoddart: Nano Letters, 4(1), 2004:

Proposed mechanisms:
Molecule/metal interaction; Nanofilament; “incomplete 
electrochemical reaction at electrode”

•>125 day retention
•>1 V variation
•Ron:Roff ~ 100 - 200
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NanofilamentsNanofilaments

Tour, Franzon, et.al.  JACS 2003
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NanoFilamentNanoFilament
In solid electrolyte

Mechanism: Precipited Cu 
atoms forming conducting 
paths
100 µS write times; Ron:Roff
106

Retention > several months
Demonstrated several 
months retention time, 
consistent results across 
array, 103 - 105 cycles, 
decreasing with smaller size 

Sakamoto, et.al., APL 82(18) 2003 
(NEC & NIMS)
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Coulomb BarrierCoulomb Barrier

Bozano, et.al., APL 84(4), 2004.  (IBM)
“… due to charge storage, where resultant space-charge 
field inhibits injection.” (on Al grains)
Don’t claim a device (yet)
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Electrochemical CapacitorElectrochemical Capacitor

Lindsay et.al, (NCSU / ZettaCore)
Multi-state “capacitor” based on electrochemistry
200s retention time
IV results modeled from CV measurements

Misra et.al., IEDM 2003
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Integration Problem StatementIntegration Problem Statement

Scale mismatch:

Solution Paths
Directed Nano-imprinting
Random interconnect

3.2 nm

c/- Intel

Limited Metal Smoothness
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Directed Directed NanoImprintNanoImprint

Nano-imprinting
E.g. Heath:

Fanout to Microscale
Random angled alignment & Nano-imprinting
Franzon, DiSpigna:

Integrated devices into wires
DeHon:

Metal 2Dielectric
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Random InterconnectRandom Interconnect
NanoCell Concept

(with Jim Tour’s group @ Rice University)
Physical Architecture:

Build logical architecture by programming device 
externally, as a complete unit

Tour, J.M., Cheng, L., Nackashi, D.P., Yao, Y., Flatt, A.K., St. Angelo, S.K.; 
Mallouk, T.E.; Franzon, P.D.; “Nanocell Electronic Memories,” J. Am. Chem. 
Soc., 125, 13279-13283, 2003.

J.M Tour, W.L. Van Zandt, C.P. Husband, S.M. Husband, L.S. Wilson, D.P. 
Nackashi, P.D. Franzon, “Nanocell Logic Gates for Molecular Computing,”
IEEE Trans. Nano., vol 1, June 2002, pp. 100-109.

Lithographed WiresRandomly
Interconnected
Molecular
Devices
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NanoCellNanoCell ConstructionConstruction

Discontinuous Gold Film 
deposition and 
patterning

Thin gold evaporation

Pattern electrodes:
2-step liftoff to prevent 
edge shorting
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Assembly and CharacterizationAssembly and Characterization

UV-ozone and EtOH wash
Gold nanorod passivation and assembly

200-2000nm rods, mononitro oligo(phenylene ethynlene) + 
DCM
Thioacetyl cleaved in NH4OH + EtOH

Nanocell chip added for assembly 
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Assembled Assembled NanoCellsNanoCells

with:
L. Cheng, J. Tour
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After AssemblyAfter Assembly

Randomly connected circuit built!
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Memory and Crossbar ArchitecturesMemory and Crossbar Architectures

1R1T Cell:
Conventional (MRAM-
style) architecture
Large Cells
Best Circuit

1R Cell:
All demonstrated 
Molecular RAMs
Smaller Cells
More difficult circuit

Reduced Isolation
Slower performance

1R1T cell
1R cellMolecular-scale Transistor Difficult
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VWA

VWNA

VBNA VBA

ROODA
ROODNA

RW

RW

RB RB

RL RL

ROODR
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VOODA

VOUT

VOODNA

Accessed wordline

Scalability issues in 1R Scalability issues in 1R RAMsRAMs

Accessed Bit

Bit Read/WriteShould be “quiet”
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Typical ParametersTypical Parameters

Rwire << Rdevice
E.g. 40 nm x 8 nm x 1 µm wire : ~ 3 kΩ
40 nm x 40 nm Molecular Device:

◊ Ron ~ 10 MΩ; Roff ~ 1 GΩ

Permits simplification of resistance model

RL

VWA

VWNA

VBNA VBA

 R
m-1

L

 R
n-1

R      R
(n-1)(m-1)

R

R
(m-1)

ON/OFF RON/OFF



25

Noise Margin ScalingNoise Margin Scaling

16x16 array (256 bits)

1R cell
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Better ApproachesBetter Approaches

1R1D Cell : Reverse bias isolation required to 
build a scalable array

High-Z sense Amps & other circuit approaches 
can help scalability

1R1D cell

I

V
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Noise Margin Scaling for 1R1D cellNoise Margin Scaling for 1R1D cell

Noise margin:

1MX1M8000:1

12kX12k1000:1

1225X1225100:1
128X12813:1

64x647:1

Max. ArrayOn:off Ratio

100kb
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Impact of ScalabilityImpact of Scalability

Raw Bit Density
4F2 cells; F = 5 nm 1012 bits / sq.cm = 100 DVDs/sq.cm.

Effective Bit Density
Circuit overhead determined by size of Memory Subarray
Large subarray Less area overhead for fanout, 
row/column decoders and sense amps
Typical DRAMs organized as arrays of 128 Mbit (10,000 x 
10,000) 1R1T cells
◊ 6,400 bits / edge circuit

1000:1 on:off ratio needed to match DRAM
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LogicLogic

Scalable logic difficult with 
two terminal devices
E.g. NAND gate based on NDR
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ConclusionsConclusions

Potential of Molecular Electronics
Mainly Ultra-dense flash memories
1012 bits/sq.cm. Video Library in flash card!
Potential exists BEYOND the end of ITRS (~2016+)

Devices
True molecular basis demonstrated and understood
Performance still needs substantial improvement though

Integration & Interconnect
Critical challenge!


